TMRC3 202412: Differential Expression analyses, Tumaco only.

atb

2024-12-23

1 Changelog

  • 202412: Reorganizing the lme work
  • 202411: Working on the addition of linear mixed models.
  • 202406: Added an explicit comparison of different model constructions using our most variable cell type, the neutrophils.
  • 202406: Working entirely out of the container now, separated GSE/GSEA analyses, added a full treatment with clusterProfiler; I am not currently writing the cp results out as xlsx files until/unless someone expresses interest in them.
  • 202309: Disabled GSVA analyses until/unless we get permission to include the mSigDB 7.5.1 release (what I used). I will simplify the filenames so that one may easily drop in a downloaded copy of the data and run hose blocks. Until then, I guess you (fictitious reader) will have to trust me when I say those blocks all work? (Also, GSVA was moved to a separate document)
  • 202309: Moved all gene set enrichment analyses to 04lrt_gsea_gsva.Rmd
  • 202309 next day: Moving gene set enrichment back because it adds too much complexity to save/reload the DE results for gProfiler and friends.
  • Still hunting for messed up colors, changed input data to match new version.

2 Notes/TODOs for 202412+

  • What do we think about dream’s adjusted p-value results?
  • Create tables of the mlm results as xlsx files, do not bother pulling them into the tables with deseq etc. ** 5 tables: monocyte, neutrophil, eosinophil, all, all+sva
  • Create scatter plots showing similarities between p-values perhaps and z-scores, and logFC.
  • Perform GO etc with mlm results.

3 Introduction

The various differential expression analyses of the data generated in tmrc3_datasets will occur in this document. Most of the actual work is via the function ‘all_pairwise()’; the word ‘all’ in the name does a lot of work; it is responsible for performing all possible pairwise contrasts using all possible methods for which I have sufficient understanding to be able to write a reasonably robust pairwise function. Currently this is limited to:

  • DESeq2 (Love, Huber, and Anders (2014)): Our ‘default’
  • edgeR (McCarthy, Chen, and Smyth (2012)): shares a close conceptual lineage with DESeq2 I think.
  • limma (Ritchie et al. (2015)): along with voom this provides a nicely robust set of tools.
  • EBseq (Leng et al. (2013)): I think it is not as robust as the previous entries, but I like using it because it is an almost purely bayesian method and as such provides a different perspective on any dataset.
  • Noiseq (Tarazona et al. (2015)): I noticed this method relatively recently and was sufficiently intrigued that I threw a method together using it. The authors appear to me to be looking to understand a lot of the questions on which I spend a lot of time.
  • Dream (Hoffman and Roussos (2020)): I mostly like this because it uses variancePartition, which I think is a really nice toy when trying to understand what is going on in a dataset.
  • basic is my own, explicitly uninformed analysis. It is my ‘negative control’ method because, if something agrees entirely with it, then I know that all the fancy math and statistics performed by that method worked out just the same as some doofus (me) just log2 subtracting the expression values. It is not quite that basic, but pretty close.

The first 3 methods allow one to add surrogate variable estimates to the model when performing the differential expression analyses. Noiseq handles surrogates using its own heuristics, EBSeq is inimicable to that kind of model, and I explicitly chose to not make that possible for basic. I am uncertain at this time how the random effect factors used with dream interact with surrogates from sva. With that in mind, in most instances I usually deal with surrogates/batches in one of a few ways:

  1. If the data is absurdly pretty, do nothing (pretty much only for well-controlled bacterial data).
  2. Add a known batch factor to the model (the default).
  3. Try to ensure the data is suitable and invoke sva
    1. to acquire estimates and add them to the model.
  4. If the data has a known batch factor and it is particularly pathological, use the combat implementation in sva. As a general rule I do not like this option because it is data destructive.

The last two options are handled via a function named ‘all_adjusters’ in hpgltools which is responsible for ensuring that the data is sane for the assumptions made by each method and invokes each method (hopefully) properly. It returns both modified counts and model estimates when possible and has implementations for a fair number of methods in this realm. sva is my favorite by a pretty big margin, though I do sometimes use RUV (Risso et al. (2014)) and of course, in writing this document I stumbled into another interesting contender: (Molania et al. (2023)) all_adjusters() also has implementations of every example/method I got out of the papers for sva (e.g. ssva/fsva), isva, smartsva, and some others.

I have been changing hpgltools so that it is now possible to trivially pass arbitrarily complex models to the various methods; with the caveat that there is no good way currently to mix fixed effects and random effects across methods; so I am running dream separately and adding it to the result of all_pairwise post-facto.

3.1 Define contrasts for DE analyses

Each of the following lists describes the set of contrasts that I think are interesting for the various ways one might consider the TMRC3 dataset. The variables are named according to the assumed data with which they will be used, thus tc_cf_contrasts is expected to be used for the Tumaco+Cali data and provide a series of cure/fail comparisons which (to the extent possible) across both locations. In every case, the name of the list element will be used as the contrast name, and will thus be seen as the sheet name in the output xlsx file(s); the two pieces of the character vector value are the numerator and denominator of the associated contrast.

  • Our primary question: fail/cure: Any excel file written using this contrast will get a single worksheet comparing fail/cure.
  • Compare fail/cure for each visit: This takes a more granular view of the previous contrast. If one is so-inclined, one could compare results from the following contrast against the previous and following contrast to learn about the dynamics of the healing (or not) process.
  • All samples by visit: This is effectively the opposite of the previous and compares all samples of visit x against visit y.
  • Visit 1 vs everything else: When I first did the previous set of contrasts I quickly realized that visits 2 and 3 are relatively similar and that it may be possible to gain a little power and learn a little more by combining them.
  • Directly compare celltypes: We have three clinical cell types in the data and the differences among them are quite interesting.
  • Ethnicities: We also have three ethnic groups in the data, though there are some wacky confounded variables when considering them through the lense of cure/fail; so any results comparing them should be treated with caution.
  • Powerless visits+celltype+cf: This is a last-minute addition requested by Maria Adelaida. I assume it was suggested by a reviewer, though I do not recall seeing anything in the reviews which made this request. The number of samples we have in the data just barely supports these contrasts, and given the strength of all the various surrogates, I would be somewhat reluctant to trust any genes deemed DE in them without some other evidence. It should be noted that this is the intellectual counterpoint to the critique from a different reviewer, that artifically merging factors like this is problematic (I personally tend to agree with the later argument more than the former with the caveat that the added complexity (with respect to what is actually typed by the person (me)) can be a problem. Thus I tend to do the thing which is explicitly less statistically correct (but I can also show pretty definitively that the results are very nearly identical) in order to make it easier to show that no mistakes were made. E.g. tension between ‘correctness’ and ‘robustness’.
t_cf_contrast <- list(
  "outcome" = c("tumaco_failure", "tumaco_cure"))
cf_contrast <- list(
  "outcome" = c("failure", "cure"))
visitcf_contrasts <- list(
  "v1cf" = c("v1_failure", "v1_cure"),
  "v2cf" = c("v2_failure", "v2_cure"),
  "v3cf" = c("v3_failure", "v3_cure"))
visit_contrasts <- list(
  "v2v1" = c("c2", "c1"),
  "v3v1" = c("c3", "c1"),
  "v3v2" = c("c3", "c2"))
visit_v1later <- list(
  "later_vs_first" = c("later", "first"))
celltypes <- list(
  "eo_mono" = c("eosinophils", "monocytes"),
  "ne_mono" = c("neutrophils", "monocytes"),
  "eo_ne" = c("eosinophils", "neutrophils"))
ethnicity_contrasts <- list(
  "mestizo_indigenous" = c("mestiza", "indigena"),
  "mestizo_afrocol" = c("mestiza", "afrocol"),
  "indigenous_afrocol" = c("indigena", "afrocol"))
outcometype_contrasts <- list(
  "monocyte_cf" = c("failure_monocytes", "cure_monocytes"),
  "neutrophil_cf" = c("failure_neutrophils", "cure_neutrophils"),
  "eosinophil_cf" = c("failure_eosinophils", "cure_eosinophils"))
visittype_contrasts_mono <- list(
  "v2v1_mono_cure" = c("monocytes_2_cure", "monocytes_1_cure"),
  "v2v1_mono_failure" = c("monocytes_2_failure", "monocytes_1_failure"),
  "v3v1_mono_cure" = c("monocytes_3_cure", "monocytes_1_cure"),
  "v3v1_mono_failure" = c("monocytes_3_failure", "monocytes_1_failure"))
visittype_contrasts_eo <- list(
  "v2v1_eo_cure" = c("eosinophils_2_cure", "eosinophils_1_cure"),
  "v2v1_eo_failure" = c("eosinophils_2_failure", "eosinophils_1_failure"),
  "v3v1_eo_cure" = c("eosinophils_3_cure", "eosinophils_1_cure"),
  "v3v1_eo_failure" = c("eosinophils_3_failure", "eosinophils_1_failure"))
visittype_contrasts_ne <- list(
  "v2v1_ne_cure" = c("neutrophils_2_cure", "neutrophils_1_cure"),
  "v2v1_ne_failure" = c("neutrophils_2_failure", "neutrophils_1_failure"),
  "v3v1_ne_cure" = c("neutrophils_3_cure", "neutrophils_1_cure"),
  "v3v1_ne_failure" = c("neutrophils_3_failure", "neutrophils_1_failure"))
visittype_contrasts <- c(visittype_contrasts_mono,
                         visittype_contrasts_eo,
                         visittype_contrasts_ne)

3.2 Gene Set Enrichment / over representation

Previously, the over representation analyses (e.g. GO and friends) followed each DE analysis during this document. I recently mentally severed my conception of GO analyses into two camps: over representation analyses in which one provides a group of genes deemed significant in some way and asks if there are known categories which contain these genes more than one would expect at random. In contrast, I am defining gene set enrichment analyses explcitly as the process of passing all genes with their metric of choice (logFC, exprs, whatever) and asking if the distribution of all genes is significant with respect to the categories.

With that in mind, I added a series of explicitly GSEA analyses in my later iterations of these documents so that both ways of thinking are provided.

However, I moved those analyses to a separate document (05enrichment.Rmd) in the hopes of improving their organization.

4 Only Tumaco samples

Start over, this time with only the samples from Tumaco. We currently are assuming these will prove to be the only analyses used for final interpretation. This is primarily because we have insufficient samples which failed treatment from Cali. There is one disadvantage when using these samples: they had to travel further than the samples taken in Cali and there is significant variance observed between the two locations and we cannot discern its source. In the worst case scenario (one which I think unlikely), the variance is caused by degraded RNA during transit. We do know that the samples were well-stored in RNALater and frozen/etc, so I am inclined to discount that possibility. (Also, looking at the reads in IGV they don’t ‘look’ degreaded to me.) I think a more compelling difference lies in the different population demographics observed in the two locations. Actually, now that I have typed these sentences out, I think I can semi-test this hypothesis by looking at the set of DE genes between the two locations and compare that result to the Tumaco (and/or Cali) ethnicity comparison which is most representative of the ethnicity differences between them. If I get it into my head to try this, I will need to load the DE tables from the 03differential_expression_both.Rmd document; so I am most likely to try it out in the 07var_coef document, which was mostly written by Theresa and is already examining some similar questions.

4.1 All samples

Start by considering all Tumaco cell types. Note that in this case we only use SVA, primarily because I am not certain what would be an appropriate batch factor, perhaps visit?

t_cf_clinical_de_sva <- all_pairwise(t_clinical, model_batch = "svaseq",
                                     parallel = parallel, filter = TRUE,
                                     methods = methods)
## 
##    cure failure 
##      67      56
t_clinical <- t_cf_clinical_de_sva[["input"]]
t_cf_clinical_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 falr_vs_cr
## limma_vs_deseq      0.8063
## limma_vs_edger      0.8177
## limma_vs_ebseq      0.6054
## limma_vs_basic      0.8704
## limma_vs_noiseq     0.7652
## limma_vs_dream      0.9405
## deseq_vs_edger      0.9845
## deseq_vs_ebseq      0.6981
## deseq_vs_basic      0.8242
## deseq_vs_noiseq     0.9062
## deseq_vs_dream      0.8464
## edger_vs_ebseq      0.6715
## edger_vs_basic      0.8285
## edger_vs_noiseq     0.9027
## edger_vs_dream      0.8442
## ebseq_vs_basic      0.6341
## ebseq_vs_noiseq     0.6921
## ebseq_vs_dream      0.7273
## basic_vs_noiseq     0.8582
## basic_vs_dream      0.8735
## noiseq_vs_dream     0.7922
t_cf_clinical_table_sva <- combine_de_tables(
  t_cf_clinical_de_sva, keepers = cf_contrast,
  excel = glue("{cf_prefix}/All_Samples/t_clinical_cf_table_sva-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
t_cf_clinical_table_sva
## A set of combined differential expression results.
##             table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 failure_vs_cure          94           183         103           159
##   limma_sigup limma_sigdown
## 1          50            38
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_clinical_table_sva[["plots"]][["outcome"]][["deseq_ma_plots"]]

t_cf_clinical_sig_sva <- extract_significant_genes(
  t_cf_clinical_table_sva,
  excel = glue("{cf_prefix}/All_Samples/t_clinical_cf_sig_sva-v{ver}.xlsx"))
t_cf_clinical_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome       50         38      103        159       94        183        0
##         ebseq_down basic_up basic_down
## outcome         49       29          6

dim(t_cf_clinical_sig_sva$deseq$ups[[1]])
## [1] 94 77
dim(t_cf_clinical_sig_sva$deseq$downs[[1]])
## [1] 183  77

Repeat without the biopsies.

t_cf_clinicalnb_de_sva <- all_pairwise(t_clinical_nobiop, model_batch = "svaseq",
                                       parallel = parallel, filter = TRUE,
                                       methods = methods)
## 
##    cure failure 
##      58      51
t_clinical_nobiop <- t_cf_clinicalnb_de_sva[["input"]]
t_cf_clinicalnb_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 falr_vs_cr
## limma_vs_deseq      0.8463
## limma_vs_edger      0.8506
## limma_vs_ebseq      0.7814
## limma_vs_basic      0.8571
## limma_vs_noiseq     0.7865
## limma_vs_dream      0.9851
## deseq_vs_edger      0.9964
## deseq_vs_ebseq      0.8187
## deseq_vs_basic      0.8266
## deseq_vs_noiseq     0.8874
## deseq_vs_dream      0.8452
## edger_vs_ebseq      0.8142
## edger_vs_basic      0.8367
## edger_vs_noiseq     0.8933
## edger_vs_dream      0.8487
## ebseq_vs_basic      0.7405
## ebseq_vs_noiseq     0.8561
## ebseq_vs_dream      0.7810
## basic_vs_noiseq     0.8916
## basic_vs_dream      0.8478
## noiseq_vs_dream     0.7767
t_cf_clinicalnb_table_sva <- combine_de_tables(
  t_cf_clinicalnb_de_sva, keepers = cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/All_Samples/t_clinical_nobiop_cf_table_sva-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
t_cf_clinicalnb_table_sva
## A set of combined differential expression results.
##             table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 failure_vs_cure         140            75         142            67
##   limma_sigup limma_sigdown
## 1          54            46
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_clinicalnb_table_sva[["plots"]][["outcome"]][["deseq_ma_plots"]]

t_cf_clinicalnb_sig_sva <- extract_significant_genes(
  t_cf_clinicalnb_table_sva,
  excel = glue("{cf_prefix}/All_Samples/t_clinical_nobiop_cf_sig_sva-v{ver}.xlsx"))
t_cf_clinicalnb_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome       54         46      142         67      140         75        1
##         ebseq_down basic_up basic_down
## outcome          7       83         30

dim(t_cf_clinicalnb_sig_sva$deseq$ups[[1]])
## [1] 140  84
dim(t_cf_clinicalnb_sig_sva$deseq$downs[[1]])
## [1] 75 84

As the data structure’s name suggests, the above comparison seeks to learn if there are fail/cure differences discernable across all clinical celltypes in samples taken in Tumaco.

The set of steps taken in this previous block will be essentially repeated for every set of contrasts and way of mixing/matching the data and follows the path:

  1. Run all_pairwise to run deseq and friends using surogate estimates provided by sva when appropriate/possible. This creates an unwieldy datastructure containing the results from all methods and all contrasts as a series of nested lists.
  2. Mash them together with combine_de_tables, use the ‘keepers’ argument to define the desired numerators/denominators, and write the tables to the file provided in the ‘excel’ argument.
  3. Yank out the ‘significant’ genes and send them to a separate excel document. In all cases, ‘significant’ is the set with a |log2FC| >= 1.0 and adjusted p-value <= 0.05. This reminds me, one of the reviewers mentioned a set of international guidelines for significant genes, I thought I basically know what I am doing, but this caught me completely unaware. If anyone ever reads this (no one will, let us be honest) I would love to know. The closest thing I found is: (Chung et al. (2021)), but I do not think it really addresses this idea (I have not yet read it carefully).

These datastructures are all exposed to various functions in hpgltools which allow one to poke/compare them; I am not a fan of Excel, but I think the xlsx documents it creates are pretty decent, too.

5 Visit comparisons

Later in this document I do a bunch of visit/cf comparisons. In this block I want to explicitly only compare v1 to other visits. This is something I did quite a lot in the 2019 datasets, but never actually moved to this document.

tv1_vs_later <- all_pairwise(t_v1vs, model_batch = "svaseq",
                             parallel = parallel, filter = TRUE,
                             methods = methods)
## 
## first later 
##    40    69
t_v1vs <- tv1_vs_later[["input"]]
tv1_vs_later
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 ltr_vs_frs
## limma_vs_deseq      0.8394
## limma_vs_edger      0.8457
## limma_vs_ebseq      0.7791
## limma_vs_basic      0.8133
## limma_vs_noiseq     0.7433
## limma_vs_dream      0.9717
## deseq_vs_edger      0.9983
## deseq_vs_ebseq      0.7809
## deseq_vs_basic      0.7946
## deseq_vs_noiseq     0.8587
## deseq_vs_dream      0.8498
## edger_vs_ebseq      0.7868
## edger_vs_basic      0.7983
## edger_vs_noiseq     0.8626
## edger_vs_dream      0.8564
## ebseq_vs_basic      0.7513
## ebseq_vs_noiseq     0.8284
## ebseq_vs_dream      0.8100
## basic_vs_noiseq     0.8895
## basic_vs_dream      0.8022
## noiseq_vs_dream     0.7516
tv1_vs_later_table <- combine_de_tables(
  tv1_vs_later, keepers = visit_v1later, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Visits/tv1_vs_later_tables-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
tv1_vs_later_table
## A set of combined differential expression results.
##            table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 later_vs_first          24             7          22             7
##   limma_sigup limma_sigdown
## 1          23             7
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

tv1_vs_later_sig <- extract_significant_genes(
  tv1_vs_later_table,
  excel = glue("{xlsx_prefix}/DE_Visits/tv1_vs_later_sig-v{ver}.xlsx"))
tv1_vs_later_sig
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##                limma_up limma_down edger_up edger_down deseq_up deseq_down
## later_vs_first       23          7       22          7       24          7
##                ebseq_up ebseq_down basic_up basic_down
## later_vs_first        0          0        0          3

6 Sex comparison

There is an important caveat when considering the sex of people in the study: there are very few females who failed. As a result I primarily concerned with the cure samples male/female.

t_sex <- subset_expt(tc_sex, subset = "clinic == 'tumaco'")
## subset_expt(): There were 184, now there are 123 samples.
t_sex
## A modified expressionSet containing 19952  and 123 sample. There are 164 metadata columns and 15 annotation columns.
## The primary condition is comprised of:
## female, male.
## Its current state is: raw(data).
t_sex_de <- all_pairwise(t_sex, model_batch = "svaseq", methods = methods,
                         parallel = parallel, filter = TRUE)
## 
## female   male 
##     22    101
t_sex <- t_sex_de[["input"]]
t_sex_de
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 mal_vs_fml
## limma_vs_deseq      0.8596
## limma_vs_edger      0.8663
## limma_vs_ebseq      0.7762
## limma_vs_basic      0.9481
## limma_vs_noiseq     0.8154
## limma_vs_dream      0.9769
## deseq_vs_edger      0.9909
## deseq_vs_ebseq      0.7608
## deseq_vs_basic      0.8703
## deseq_vs_noiseq     0.9120
## deseq_vs_dream      0.8815
## edger_vs_ebseq      0.7802
## edger_vs_basic      0.8748
## edger_vs_noiseq     0.9116
## edger_vs_dream      0.8862
## ebseq_vs_basic      0.7161
## ebseq_vs_noiseq     0.7579
## ebseq_vs_dream      0.7985
## basic_vs_noiseq     0.8530
## basic_vs_dream      0.9363
## noiseq_vs_dream     0.8273
t_sex_table <- combine_de_tables(
  t_sex_de, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/Gene_Set_Enrichment/t_sex_table-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
t_sex_table
## A set of combined differential expression results.
##            table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 male_vs_female         129            96         116            95
##   limma_sigup limma_sigdown
## 1          54            74
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_sex_sig <- extract_significant_genes(
  t_sex_table, excel = glue("{xlsx_prefix}/Gene_Set_Enrichment/t_sex_sig-v{ver}.xlsx"))
t_sex_sig
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##                limma_up limma_down edger_up edger_down deseq_up deseq_down
## male_vs_female       54         74      116         95      129         96
##                ebseq_up ebseq_down basic_up basic_down
## male_vs_female       12         13       18         11

In the following block I removed the failed people so that the comparison makes actual sense.

tc_sex_cure <- subset_expt(tc_sex, subset = "finaloutcome=='cure'")
## subset_expt(): There were 184, now there are 122 samples.
t_sex_cure <- subset_expt(tc_sex_cure, subset = "clinic == 'tumaco'")
## subset_expt(): There were 122, now there are 67 samples.
t_sex_cure_de <- all_pairwise(t_sex_cure, model_batch = "svaseq",
                              parallel = parallel, filter = TRUE,
                              methods = methods)
## 
## female   male 
##     13     54
t_sex_cure <- t_sex_cure_de[["input"]]
t_sex_cure_de
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 mal_vs_fml
## limma_vs_deseq      0.7804
## limma_vs_edger      0.8380
## limma_vs_ebseq      0.7446
## limma_vs_basic      0.9284
## limma_vs_noiseq     0.8149
## limma_vs_dream      0.9698
## deseq_vs_edger      0.9294
## deseq_vs_ebseq      0.7225
## deseq_vs_basic      0.7995
## deseq_vs_noiseq     0.8453
## deseq_vs_dream      0.8093
## edger_vs_ebseq      0.7687
## edger_vs_basic      0.8474
## edger_vs_noiseq     0.8881
## edger_vs_dream      0.8625
## ebseq_vs_basic      0.6679
## ebseq_vs_noiseq     0.7109
## ebseq_vs_dream      0.7812
## basic_vs_noiseq     0.8792
## basic_vs_dream      0.9214
## noiseq_vs_dream     0.8411
t_sex_cure_table <- combine_de_tables(
  t_sex_cure_de, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Sex/t_sex_cure_table-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
t_sex_cure_table
## A set of combined differential expression results.
##            table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 male_vs_female         176           134         162           143
##   limma_sigup limma_sigdown
## 1          64           108
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_sex_cure_sig <- extract_significant_genes(
  t_sex_cure_table, excel = glue("{xlsx_prefix}/DE_Sex/t_sex_cure_sig-v{ver}.xlsx"))
t_sex_cure_sig
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##                limma_up limma_down edger_up edger_down deseq_up deseq_down
## male_vs_female       64        108      162        143      176        134
##                ebseq_up ebseq_down basic_up basic_down
## male_vs_female       11         15       14          5

7 Ethnicity comparisons

In a fashion similar to the putative sex comparisons; there are few/no fails for one ethnicity. In addition, the observed ethnicities are very different for the two clinics. This makes comparisons of the ethnicities tricky.

t_ethnicity_de <- all_pairwise(t_etnia_expt, model_batch = "svaseq",
                               parallel = parallel, filter = TRUE,
                               methods = methods)
## 
##  afrocol indigena  mestiza 
##       76       19       28
t_etnia_expt <- t_ethnicity_de[["input"]]
t_ethnicity_de
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
t_ethnicity_table <- combine_de_tables(
  t_ethnicity_de, keepers = ethnicity_contrasts, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Ethnicity/t_ethnicity_table-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
t_ethnicity_table
## A set of combined differential expression results.
##                 table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 mestiza_vs_indigena          83            97          67           108
## 2  mestiza_vs_afrocol          57            92          52            96
## 3 indigena_vs_afrocol         165           236         187           216
##   limma_sigup limma_sigdown
## 1          58            56
## 2          42            53
## 3         165           147
## Plot describing unique/shared genes in a differential expression table.

t_ethnicity_sig <- extract_significant_genes(
  t_ethnicity_table, according_to = "deseq",
  excel = glue("{xlsx_prefix}/DE_Ethnicity/t_ethnicity_sig-v{ver}.xlsx"))
t_ethnicity_sig
## A set of genes deemed significant according to deseq.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##                    deseq_up deseq_down
## mestizo_indigenous       83         97
## mestizo_afrocol          57         92
## indigenous_afrocol      165        236

8 Separate the Tumaco data by visit

One of the most compelling ideas in the data is the opportunity to find genes in the first visit which may help predict the likelihood that a person will respond well to treatment. The following block will therefore look at cure/fail from Tumaco at visit 1.

8.1 Cure/Fail, Tumaco Visit 1

t_cf_clinical_v1_de_sva <- all_pairwise(tv1_samples, model_batch = "svaseq",
                                        parallel = parallel, filter = TRUE,
                                        methods = methods)
## 
##    cure failure 
##      30      24
tv1_samples <- t_cf_clinical_v1_de_sva[["input"]]
t_cf_clinical_v1_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 falr_vs_cr
## limma_vs_deseq      0.7398
## limma_vs_edger      0.7829
## limma_vs_ebseq      0.5529
## limma_vs_basic      0.6886
## limma_vs_noiseq     0.5978
## limma_vs_dream      0.9332
## deseq_vs_edger      0.9537
## deseq_vs_ebseq      0.7127
## deseq_vs_basic      0.6955
## deseq_vs_noiseq     0.7815
## deseq_vs_dream      0.7917
## edger_vs_ebseq      0.6798
## edger_vs_basic      0.7228
## edger_vs_noiseq     0.7899
## edger_vs_dream      0.8274
## ebseq_vs_basic      0.6519
## ebseq_vs_noiseq     0.7747
## ebseq_vs_dream      0.6921
## basic_vs_noiseq     0.8245
## basic_vs_dream      0.7310
## noiseq_vs_dream     0.6911
t_cf_clinical_v1_table_sva <- combine_de_tables(
  t_cf_clinical_v1_de_sva, keepers = cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Visits/t_clinical_v1_cf_table_sva-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
t_cf_clinical_v1_table_sva
## A set of combined differential expression results.
##             table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 failure_vs_cure          27            75          28            55
##   limma_sigup limma_sigdown
## 1           3             3
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_clinical_v1_sig_sva <- extract_significant_genes(
  t_cf_clinical_v1_table_sva,
  excel = glue("{cf_prefix}/Visits/t_clinical_v1_cf_sig_sva-v{ver}.xlsx"))
t_cf_clinical_v1_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome        3          3       28         55       27         75        0
##         ebseq_down basic_up basic_down
## outcome         37        0          0

dim(t_cf_clinical_v1_sig_sva$deseq$ups[[1]])
## [1] 27 84
dim(t_cf_clinical_v1_sig_sva$deseq$downs[[1]])
## [1] 75 84

8.2 Cure/Fail, Tumaco Visit 2

The visit 2 and visit 3 samples are interesting because they provide an opportunity to see if we can observe changes in response in the middle and end of treatment…

t_cf_clinical_v2_de_sva <- all_pairwise(tv2_samples, model_batch = "svaseq",
                                        parallel = parallel, filter = TRUE,
                                        methods = methods)
## 
##    cure failure 
##      20      15
tv2_samples <- t_cf_clinical_v2_de_sva[["input"]]
t_cf_clinical_v2_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 falr_vs_cr
## limma_vs_deseq      0.8138
## limma_vs_edger      0.8162
## limma_vs_ebseq      0.6902
## limma_vs_basic      0.7404
## limma_vs_noiseq     0.6291
## limma_vs_dream      0.9633
## deseq_vs_edger      0.9986
## deseq_vs_ebseq      0.7893
## deseq_vs_basic      0.7689
## deseq_vs_noiseq     0.8412
## deseq_vs_dream      0.8053
## edger_vs_ebseq      0.7929
## edger_vs_basic      0.7701
## edger_vs_noiseq     0.8401
## edger_vs_dream      0.8077
## ebseq_vs_basic      0.7215
## ebseq_vs_noiseq     0.8218
## ebseq_vs_dream      0.6823
## basic_vs_noiseq     0.8528
## basic_vs_dream      0.7173
## noiseq_vs_dream     0.6034
t_cf_clinical_v2_table_sva <- combine_de_tables(
  t_cf_clinical_v2_de_sva, keepers = cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Visits/t_clinical_v2_cf_table_sva-v{ver}.xlsx"))
t_cf_clinical_v2_table_sva
## A set of combined differential expression results.
##             table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 failure_vs_cure          51            15          50            11
##   limma_sigup limma_sigdown
## 1           0             0
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_clinical_v2_sig_sva <- extract_significant_genes(
  t_cf_clinical_v2_table_sva,
  excel = glue("{cf_prefix}/Visits/t_clinical_v2_cf_sig_sva-v{ver}.xlsx"))
t_cf_clinical_v2_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome        0          0       50         11       51         15        0
##         ebseq_down basic_up basic_down
## outcome          0        0          0

dim(t_cf_clinical_v2_sig_sva$deseq$ups[[1]])
## [1] 51 84
dim(t_cf_clinical_v2_sig_sva$deseq$downs[[1]])
## [1] 15 84

8.3 Cure/Fail, Tumaco Visit 3

Repeat for visit 3

t_cf_clinical_v3_de_sva <- all_pairwise(tv3_samples, model_batch = "svaseq",
                                        parallel = parallel, filter = TRUE,
                                        methods = methods)
## 
##    cure failure 
##      17      17
tv3_samples <- t_cf_clinical_v3_de_sva[["input"]]
t_cf_clinical_v3_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 falr_vs_cr
## limma_vs_deseq      0.8530
## limma_vs_edger      0.8605
## limma_vs_ebseq      0.7614
## limma_vs_basic      0.8193
## limma_vs_noiseq     0.7409
## limma_vs_dream      0.9817
## deseq_vs_edger      0.9978
## deseq_vs_ebseq      0.8006
## deseq_vs_basic      0.7969
## deseq_vs_noiseq     0.8716
## deseq_vs_dream      0.8559
## edger_vs_ebseq      0.8040
## edger_vs_basic      0.8030
## edger_vs_noiseq     0.8769
## edger_vs_dream      0.8635
## ebseq_vs_basic      0.7585
## ebseq_vs_noiseq     0.8465
## ebseq_vs_dream      0.7661
## basic_vs_noiseq     0.8988
## basic_vs_dream      0.8072
## noiseq_vs_dream     0.7378
t_cf_clinical_v3_table_sva <- combine_de_tables(
  t_cf_clinical_v3_de_sva, keepers = cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Visits/t_clinical_v3_cf_table_sva-v{ver}.xlsx"))
t_cf_clinical_v3_table_sva
## A set of combined differential expression results.
##             table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 failure_vs_cure         120            61         120            50
##   limma_sigup limma_sigdown
## 1           3             1
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_clinical_v3_sig_sva <- extract_significant_genes(
  t_cf_clinical_v3_table_sva,
  excel = glue("{cf_prefix}/Visits/t_clinical_v3_cf_sig_sva-v{ver}.xlsx"))
t_cf_clinical_v3_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome        3          1      120         50      120         61        0
##         ebseq_down basic_up basic_down
## outcome          0        0          0

dim(t_cf_clinical_v3_sig_sva$deseq$ups[[1]])
## [1] 120  84
dim(t_cf_clinical_v3_sig_sva$deseq$downs[[1]])
## [1] 61 84

9 By cell type

Now let us switch our view to each individual cell type collected. The hope here is that we will be able to learn some cell-specific differences in the response for people who did(not) respond well.

9.1 Cure/Fail, Biopsies

A primary hypothesis/assumption that we have held for quite a while with this data: the biopsy samples, given that they are comprised of hetergeneous tissue types as well as a mix of healthy and infected tissue; are unlikely to be very information rich vis a vis cure/fail. The following block seems to support that; we observe very few genes in the biopsies.

I therefore did not spend the time invoking other models.

t_cf_biopsy_de_sva <- all_pairwise(t_biopsies, model_batch = "svaseq",
                                   parallel = parallel, filter = TRUE,
                                   methods = methods)
## 
##    tumaco_cure tumaco_failure 
##              9              5
t_biopsies <- t_cf_biopsy_de_sva[["input"]]
t_cf_biopsy_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 tmc_flr___
## limma_vs_deseq      0.7927
## limma_vs_edger      0.8628
## limma_vs_ebseq      0.7354
## limma_vs_basic      0.8497
## limma_vs_noiseq     0.7668
## limma_vs_dream      0.9937
## deseq_vs_edger      0.9516
## deseq_vs_ebseq      0.8628
## deseq_vs_basic      0.8164
## deseq_vs_noiseq     0.8685
## deseq_vs_dream      0.7992
## edger_vs_ebseq      0.8843
## edger_vs_basic      0.8809
## edger_vs_noiseq     0.9181
## edger_vs_dream      0.8689
## ebseq_vs_basic      0.8011
## ebseq_vs_noiseq     0.8872
## ebseq_vs_dream      0.7538
## basic_vs_noiseq     0.9162
## basic_vs_dream      0.8519
## noiseq_vs_dream     0.7760
t_cf_biopsy_table_sva <- combine_de_tables(
  t_cf_biopsy_de_sva, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Biopsies/t_biopsy_cf_table_sva-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
t_cf_biopsy_table_sva
## A set of combined differential expression results.
##                           table deseq_sigup deseq_sigdown edger_sigup
## 1 tumaco_failure_vs_tumaco_cure          17            11          19
##   edger_sigdown limma_sigup limma_sigdown
## 1            15           0             0
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_biopsy_sig_sva <- extract_significant_genes(
  t_cf_biopsy_table_sva,
  excel = glue("{cf_prefix}/Biopsies/t_cf_biopsy_sig_sva-v{ver}.xlsx"))
t_cf_biopsy_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome        0          0       19         15       17         11       11
##         ebseq_down basic_up basic_down
## outcome         57        0          0

dim(t_cf_biopsy_sig_sva$deseq$ups[[1]])
## [1] 17 84
dim(t_cf_biopsy_sig_sva$deseq$downs[[1]])
## [1] 11 84

9.2 Cure/Fail, Monocytes

Same question, but this time looking at monocytes. In addition, this comparison was done twice, once using SVA and once using visit as a batch factor.

I have been using this block to ensure that changed I have been making to the hpgltools do not change the analysis results. Thus the comment with a few logFC values; those are the first 6 observed DESeq2 logFC values in my last result before I made some changes to hpgltools in order to be able to work with random effect models.

t_cf_monocyte_de_sva <- all_pairwise(t_monocytes, model_batch = "svaseq",
                                     parallel = parallel, filter = TRUE,
                                     methods = methods)
## 
##    tumaco_cure tumaco_failure 
##             21             21
## The svs are added to the expressionset during all_pairwise.
t_monocytes <- t_cf_monocyte_de_sva[["input"]]
t_cf_monocyte_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 tmc_flr___
## limma_vs_deseq      0.8614
## limma_vs_edger      0.8663
## limma_vs_ebseq      0.7794
## limma_vs_basic      0.9210
## limma_vs_noiseq     0.8720
## limma_vs_dream      0.9910
## deseq_vs_edger      0.9989
## deseq_vs_ebseq      0.8556
## deseq_vs_basic      0.8506
## deseq_vs_noiseq     0.8955
## deseq_vs_dream      0.8713
## edger_vs_ebseq      0.8563
## edger_vs_basic      0.8560
## edger_vs_noiseq     0.9000
## edger_vs_dream      0.8755
## ebseq_vs_basic      0.8470
## ebseq_vs_noiseq     0.8874
## ebseq_vs_dream      0.7883
## basic_vs_noiseq     0.9525
## basic_vs_dream      0.9183
## noiseq_vs_dream     0.8827
t_cf_monocyte_table_sva <- combine_de_tables(
  t_cf_monocyte_de_sva, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Monocytes/t_monocyte_cf_table_sva-v{ver}.xlsx"))
t_cf_monocyte_table_sva
## A set of combined differential expression results.
##                           table deseq_sigup deseq_sigdown edger_sigup
## 1 tumaco_failure_vs_tumaco_cure          60            52          56
##   edger_sigdown limma_sigup limma_sigdown
## 1            51          11            34
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

head(t_cf_monocyte_table_sva[["data"]][["outcome"]][["deseq_logfc"]])
## [1]  0.33760 -0.07193  0.09665 -0.09082 -0.13500  0.23270
## The first few values in my pre-change result set are:
## 0.338, -0.072, 0.097, -0.091, -0.135, 0.233
t_cf_monocyte_sig_sva <- extract_significant_genes(
  t_cf_monocyte_table_sva,
  excel = glue("{cf_prefix}/Monocytes/t_monocyte_cf_sig_sva-v{ver}.xlsx"))
t_cf_monocyte_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome       11         34       56         51       60         52        0
##         ebseq_down basic_up basic_down
## outcome         23      168        197

dim(t_cf_monocyte_sig_sva$deseq$ups[[1]])
## [1] 60 84
dim(t_cf_monocyte_sig_sva$deseq$downs[[1]])
## [1] 52 84
t_cf_monocyte_de_batchvisit <- all_pairwise(t_monocytes, model_batch = TRUE,
                                            parallel = parallel, filter = TRUE,
                                            methods = methods)
## 
##    tumaco_cure tumaco_failure 
##             21             21 
## 
##  3  2  1 
## 13 13 16
t_cf_monocyte_de_batchvisit
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: batch in model/limma.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 tmc_flr___
## limma_vs_deseq      0.8120
## limma_vs_edger      0.8150
## limma_vs_ebseq      0.7952
## limma_vs_basic      0.9509
## limma_vs_noiseq     0.9004
## limma_vs_dream      0.9819
## deseq_vs_edger      0.9998
## deseq_vs_ebseq      0.9932
## deseq_vs_basic      0.8505
## deseq_vs_noiseq     0.8857
## deseq_vs_dream      0.8178
## edger_vs_ebseq      0.9935
## edger_vs_basic      0.8540
## edger_vs_noiseq     0.8884
## edger_vs_dream      0.8202
## ebseq_vs_basic      0.8470
## ebseq_vs_noiseq     0.8874
## ebseq_vs_dream      0.8016
## basic_vs_noiseq     0.9525
## basic_vs_dream      0.9414
## noiseq_vs_dream     0.9085
t_cf_monocyte_table_batchvisit <- combine_de_tables(
  t_cf_monocyte_de_batchvisit, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Monocytes/t_monocyte_cf_table_batchvisit-v{ver}.xlsx"))
t_cf_monocyte_table_batchvisit
## A set of combined differential expression results.
##                           table deseq_sigup deseq_sigdown edger_sigup
## 1 tumaco_failure_vs_tumaco_cure          43            93          47
##   edger_sigdown limma_sigup limma_sigdown
## 1           105           6            13
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_monocyte_sig_batchvisit <- extract_significant_genes(
  t_cf_monocyte_table_batchvisit,
  excel = glue("{cf_prefix}/Monocytes/t_monocyte_cf_sig_batchvisit-v{ver}.xlsx"))
t_cf_monocyte_sig_batchvisit
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome        6         13       47        105       43         93        0
##         ebseq_down basic_up basic_down
## outcome         23      168        197

dim(t_cf_monocyte_sig_batchvisit$deseq$ups[[1]])
## [1] 43 84
dim(t_cf_monocyte_sig_batchvisit$deseq$downs[[1]])
## [1] 93 84

9.3 Individual visits, Monocytes

Now focus in on the monocyte samples on a per-visit basis.

9.3.1 Visit 1

t_cf_monocyte_v1_de_sva <- all_pairwise(tv1_monocytes, model_batch = "svaseq",
                                        parallel = parallel, filter = TRUE,
                                        methods = methods)
## 
##    tumaco_cure tumaco_failure 
##              8              8
## Error in checkForRemoteErrors(val): 5 nodes produced errors; first error: c("Error in assign(levels[i], indicator(i, n), pos = levelsenv) : \n  attempt to use zero-length variable name\n", "deseq")
tv1_monocytes <- t_cf_monocyte_v1_de_sva[["input"]]
## Error in eval(expr, envir, enclos): object 't_cf_monocyte_v1_de_sva' not found
t_cf_monocyte_v1_de_sva
## Error in eval(expr, envir, enclos): object 't_cf_monocyte_v1_de_sva' not found
t_cf_monocyte_v1_table_sva <- combine_de_tables(
  t_cf_monocyte_v1_de_sva, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Monocytes/t_monocyte_v1_cf_table_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cf_monocyte_v1_de_sva' not found
t_cf_monocyte_v1_table_sva
## Error in eval(expr, envir, enclos): object 't_cf_monocyte_v1_table_sva' not found
t_cf_monocyte_v1_sig_sva <- extract_significant_genes(
  t_cf_monocyte_v1_table_sva,
  excel = glue("{cf_prefix}/Monocytes/t_monocyte_v1_cf_sig_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cf_monocyte_v1_table_sva' not found
t_cf_monocyte_v1_sig_sva
## Error in eval(expr, envir, enclos): object 't_cf_monocyte_v1_sig_sva' not found
dim(t_cf_monocyte_v1_sig_sva$deseq$ups[[1]])
## Error in eval(expr, envir, enclos): object 't_cf_monocyte_v1_sig_sva' not found
dim(t_cf_monocyte_v1_sig_sva$deseq$downs[[1]])
## Error in eval(expr, envir, enclos): object 't_cf_monocyte_v1_sig_sva' not found

9.3.2 Monocytes: Compare sva to batch-in-model

sva_aucc <- calculate_aucc(t_cf_monocyte_table_sva[["data"]][[1]],
                           tbl2 = t_cf_monocyte_table_batchvisit[["data"]][[1]],
                           py = "deseq_adjp", ly = "deseq_logfc")
sva_aucc
## These two tables have an aucc value of: 0.694200173169544 and correlation:
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 182, df = 10860, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8633 0.8726
## sample estimates:
##    cor 
## 0.8681

shared_ids <- rownames(t_cf_monocyte_table_sva[["data"]][[1]]) %in%
  rownames(t_cf_monocyte_table_batchvisit[["data"]][[1]])
first <- t_cf_monocyte_table_sva[["data"]][[1]][shared_ids, ]
second <- t_cf_monocyte_table_batchvisit[["data"]][[1]][rownames(first), ]
cor.test(first[["deseq_logfc"]], second[["deseq_logfc"]])
## 
##  Pearson's product-moment correlation
## 
## data:  first[["deseq_logfc"]] and second[["deseq_logfc"]]
## t = 182, df = 10860, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8633 0.8726
## sample estimates:
##    cor 
## 0.8681

9.4 Neutrophil samples

Switch context to the Neutrophils, once again repeat the analysis using SVA and visit as a batch factor.

t_cf_neutrophil_de_sva <- all_pairwise(t_neutrophils, model_batch = "svaseq",
                                       parallel = parallel, filter = TRUE,
                                       methods = methods)
## 
##    tumaco_cure tumaco_failure 
##             20             21
t_cf_neutrophil_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 tmc_flr___
## limma_vs_deseq      0.8742
## limma_vs_edger      0.8784
## limma_vs_ebseq      0.8430
## limma_vs_basic      0.9321
## limma_vs_noiseq     0.8943
## limma_vs_dream      0.9861
## deseq_vs_edger      0.9994
## deseq_vs_ebseq      0.9062
## deseq_vs_basic      0.8754
## deseq_vs_noiseq     0.9367
## deseq_vs_dream      0.8840
## edger_vs_ebseq      0.9068
## edger_vs_basic      0.8812
## edger_vs_noiseq     0.9404
## edger_vs_dream      0.8882
## ebseq_vs_basic      0.8587
## ebseq_vs_noiseq     0.9212
## ebseq_vs_dream      0.8365
## basic_vs_noiseq     0.9457
## basic_vs_dream      0.9210
## noiseq_vs_dream     0.8922
t_cf_neutrophil_table_sva <- combine_de_tables(
  t_cf_neutrophil_de_sva, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_cf_table_sva-v{ver}.xlsx"))
t_cf_neutrophil_table_sva
## A set of combined differential expression results.
##                           table deseq_sigup deseq_sigdown edger_sigup
## 1 tumaco_failure_vs_tumaco_cure         130            30         120
##   edger_sigdown limma_sigup limma_sigdown
## 1            27          12            12
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_neutrophil_sig_sva <- extract_significant_genes(
  t_cf_neutrophil_table_sva,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_cf_sig_sva-v{ver}.xlsx"))
t_cf_neutrophil_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome       12         12      120         27      130         30        7
##         ebseq_down basic_up basic_down
## outcome          7        7          3

dim(t_cf_neutrophil_sig_sva$deseq$ups[[1]])
## [1] 130  84
dim(t_cf_neutrophil_sig_sva$deseq$downs[[1]])
## [1] 30 84
t_cf_neutrophil_de_batchvisit <- all_pairwise(t_neutrophils, model_batch = TRUE,
                                              parallel = parallel, filter = TRUE,
                                              methods = methods)
## 
##    tumaco_cure tumaco_failure 
##             20             21 
## 
##  3  2  1 
## 12 13 16
t_cf_neutrophil_de_batchvisit
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: batch in model/limma.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 tmc_flr___
## limma_vs_deseq      0.8380
## limma_vs_edger      0.8401
## limma_vs_ebseq      0.8284
## limma_vs_basic      0.9658
## limma_vs_noiseq     0.9125
## limma_vs_dream      0.9840
## deseq_vs_edger      0.9999
## deseq_vs_ebseq      0.9813
## deseq_vs_basic      0.8644
## deseq_vs_noiseq     0.9184
## deseq_vs_dream      0.8356
## edger_vs_ebseq      0.9818
## edger_vs_basic      0.8671
## edger_vs_noiseq     0.9204
## edger_vs_dream      0.8377
## ebseq_vs_basic      0.8587
## ebseq_vs_noiseq     0.9212
## ebseq_vs_dream      0.8264
## basic_vs_noiseq     0.9457
## basic_vs_dream      0.9574
## noiseq_vs_dream     0.9157
t_cf_neutrophil_table_batchvisit <- combine_de_tables(
  t_cf_neutrophil_de_batchvisit, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_cf_table_batchvisit-v{ver}.xlsx"))
t_cf_neutrophil_table_batchvisit
## A set of combined differential expression results.
##                           table deseq_sigup deseq_sigdown edger_sigup
## 1 tumaco_failure_vs_tumaco_cure          92            47         101
##   edger_sigdown limma_sigup limma_sigdown
## 1            44           3             1
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_neutrophil_sig_batchvisit <- extract_significant_genes(
  t_cf_neutrophil_table_batchvisit,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_cf_sig_batchvisit-v{ver}.xlsx"))
t_cf_neutrophil_sig_batchvisit
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome        3          1      101         44       92         47        7
##         ebseq_down basic_up basic_down
## outcome          7        7          3

dim(t_cf_neutrophil_sig_batchvisit$deseq$ups[[1]])
## [1] 92 84
dim(t_cf_neutrophil_sig_batchvisit$deseq$downs[[1]])
## [1] 47 84

9.4.1 Neutrophils by visit

When I did this with the monocytes, I split it up into multiple blocks for each visit. This time I am just going to run them all together.

visitcf_factor <- paste0("v", pData(t_neutrophils)[["visitnumber"]], "_",
                         pData(t_neutrophils)[["finaloutcome"]])
t_neutrophil_visitcf <- set_expt_conditions(t_neutrophils, fact=visitcf_factor)
## The numbers of samples by condition are:
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          8          8          7          6          5          7
t_cf_neutrophil_visits_de_sva <- all_pairwise(t_neutrophil_visitcf, model_batch = "svaseq",
                                              parallel = parallel, filter = TRUE,
                                              methods = methods)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          8          8          7          6          5          7
t_cf_neutrophil_visits_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
t_cf_neutrophil_visits_table_sva <- combine_de_tables(
  t_cf_neutrophil_visits_de_sva, keepers = visitcf_contrasts, scale_p = TRUE,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_visitcf_table_sva-v{ver}.xlsx"))
t_cf_neutrophil_visits_table_sva
## A set of combined differential expression results.
##                   table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 v1_failure_vs_v1_cure          12             6           6             6
## 2 v2_failure_vs_v2_cure           2             6           2             3
## 3 v3_failure_vs_v3_cure           2             2           0             2
##   limma_sigup limma_sigdown
## 1           1             0
## 2           0             0
## 3           0             0
## Plot describing unique/shared genes in a differential expression table.

t_cf_neutrophil_visits_sig_sva <- extract_significant_genes(
  t_cf_neutrophil_visits_table_sva,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_visitcf_sig_sva-v{ver}.xlsx"))
t_cf_neutrophil_visits_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##      limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## v1cf        1          0        6          6       12          6        0
## v2cf        0          0        2          3        2          6        1
## v3cf        0          0        0          2        2          2        2
##      ebseq_down basic_up basic_down
## v1cf          2        0          0
## v2cf          1        0          0
## v3cf          3        0          0

dim(t_cf_neutrophil_visits_sig_sva$deseq$ups[[1]])
## [1] 12 84
dim(t_cf_neutrophil_visits_sig_sva$deseq$downs[[1]])
## [1]  6 84

Now V1

t_cf_neutrophil_v1_de_sva <- all_pairwise(tv1_neutrophils, model_batch = "svaseq",
                                          parallel = parallel, filter = TRUE,
                                          methods = methods)
## 
##    tumaco_cure tumaco_failure 
##              8              8
## Error in checkForRemoteErrors(val): 5 nodes produced errors; first error: c("Error in assign(levels[i], indicator(i, n), pos = levelsenv) : \n  attempt to use zero-length variable name\n", "deseq")
t_cf_neutrophil_v1_de_sva
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v1_de_sva' not found
t_cf_neutrophil_v1_table_sva <- combine_de_tables(
  t_cf_neutrophil_v1_de_sva, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_v1_cf_table_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v1_de_sva' not found
t_cf_neutrophil_v1_table_sva
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v1_table_sva' not found
t_cf_neutrophil_v1_sig_sva <- extract_significant_genes(
  t_cf_neutrophil_v1_table_sva,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_v1_cf_sig_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v1_table_sva' not found
t_cf_neutrophil_v1_sig_sva
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v1_sig_sva' not found
dim(t_cf_neutrophil_v1_sig_sva$deseq$ups[[1]])
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v1_sig_sva' not found
dim(t_cf_neutrophil_v1_sig_sva$deseq$downs[[1]])
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v1_sig_sva' not found

Followed by visit 2.

t_cf_neutrophil_v2_de_sva <- all_pairwise(tv2_neutrophils, model_batch = "svaseq",
                                          parallel = parallel, filter = TRUE,
                                          methods = methods)
## 
##    tumaco_cure tumaco_failure 
##              7              6
## Error in checkForRemoteErrors(val): 5 nodes produced errors; first error: c("Error in assign(levels[i], indicator(i, n), pos = levelsenv) : \n  attempt to use zero-length variable name\n", "deseq")
t_cf_neutrophil_v2_de_sva
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v2_de_sva' not found
t_cf_neutrophil_v2_table_sva <- combine_de_tables(
  t_cf_neutrophil_v2_de_sva, scale_p = TRUE, keepers = t_cf_contrast,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_v2_cf_table_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v2_de_sva' not found
t_cf_neutrophil_v2_table_sva
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v2_table_sva' not found
t_cf_neutrophil_v2_sig_sva <- extract_significant_genes(
  t_cf_neutrophil_v2_table_sva,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_v2_cf_sig_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v2_table_sva' not found
t_cf_neutrophil_v2_sig_sva
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v2_sig_sva' not found
dim(t_cf_neutrophil_v2_sig_sva$deseq$ups[[1]])
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v2_sig_sva' not found
dim(t_cf_neutrophil_v2_sig_sva$deseq$downs[[1]])
## Error in eval(expr, envir, enclos): object 't_cf_neutrophil_v2_sig_sva' not found

and visit 3.

t_cf_neutrophil_v3_de_sva <- all_pairwise(tv3_neutrophils, model_batch = "svaseq",
                                          parallel = parallel, filter = TRUE,
                                          methods = methods)
## 
##    tumaco_cure tumaco_failure 
##              5              7
t_cf_neutrophil_v3_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 tmc_flr___
## limma_vs_deseq      0.8849
## limma_vs_edger      0.8859
## limma_vs_ebseq      0.7499
## limma_vs_basic      0.7952
## limma_vs_noiseq     0.7658
## limma_vs_dream      0.9848
## deseq_vs_edger      0.9993
## deseq_vs_ebseq      0.7550
## deseq_vs_basic      0.7528
## deseq_vs_noiseq     0.8275
## deseq_vs_dream      0.8919
## edger_vs_ebseq      0.7594
## edger_vs_basic      0.7514
## edger_vs_noiseq     0.8291
## edger_vs_dream      0.8932
## ebseq_vs_basic      0.8738
## ebseq_vs_noiseq     0.9516
## ebseq_vs_dream      0.7659
## basic_vs_noiseq     0.9212
## basic_vs_dream      0.7868
## noiseq_vs_dream     0.7798
t_cf_neutrophil_v3_table_sva <- combine_de_tables(
  t_cf_neutrophil_v3_de_sva, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_v3_cf_table_sva-v{ver}.xlsx"))
t_cf_neutrophil_v3_table_sva
## A set of combined differential expression results.
##                           table deseq_sigup deseq_sigdown edger_sigup
## 1 tumaco_failure_vs_tumaco_cure           5             1           5
##   edger_sigdown limma_sigup limma_sigdown
## 1             1           0             0
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_neutrophil_v3_sig_sva <- extract_significant_genes(
  t_cf_neutrophil_v3_table_sva,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_v3_cf_sig_sva-v{ver}.xlsx"))
t_cf_neutrophil_v3_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome        0          0        5          1        5          1        2
##         ebseq_down basic_up basic_down
## outcome          3        0          0

dim(t_cf_neutrophil_v3_sig_sva$deseq$ups[[1]])
## [1]  5 84
dim(t_cf_neutrophil_v3_sig_sva$deseq$downs[[1]])
## [1]  1 84

9.4.2 Neutrophils: Compare sva to batch-in-model

sva_aucc <- calculate_aucc(t_cf_neutrophil_table_sva[["data"]][[1]],
                           tbl2 = t_cf_neutrophil_table_batchvisit[["data"]][[1]],
                           py = "deseq_adjp", ly = "deseq_logfc")
sva_aucc
## These two tables have an aucc value of: 0.673209505652166 and correlation:
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 209, df = 9099, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9060 0.9131
## sample estimates:
##    cor 
## 0.9096

shared_ids <- rownames(t_cf_neutrophil_table_sva[["data"]][[1]]) %in%
  rownames(t_cf_neutrophil_table_batchvisit[["data"]][[1]])
first <- t_cf_neutrophil_table_sva[["data"]][[1]][shared_ids, ]
second <- t_cf_neutrophil_table_batchvisit[["data"]][[1]][rownames(first), ]
cor.test(first[["deseq_logfc"]], second[["deseq_logfc"]])
## 
##  Pearson's product-moment correlation
## 
## data:  first[["deseq_logfc"]] and second[["deseq_logfc"]]
## t = 209, df = 9099, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9060 0.9131
## sample estimates:
##    cor 
## 0.9096

9.5 Eosinophils

This time, with feeling! Repeating the same set of tasks with the eosinophil samples.

t_cf_eosinophil_de_sva <- all_pairwise(t_eosinophils, model_batch = "svaseq",
                                       parallel = parallel, filter = TRUE,
                                       methods = methods)
## 
##    tumaco_cure tumaco_failure 
##             17              9
t_cf_eosinophil_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 tmc_flr___
## limma_vs_deseq      0.9099
## limma_vs_edger      0.9174
## limma_vs_ebseq      0.8005
## limma_vs_basic      0.8756
## limma_vs_noiseq     0.8128
## limma_vs_dream      0.9842
## deseq_vs_edger      0.9973
## deseq_vs_ebseq      0.8058
## deseq_vs_basic      0.8488
## deseq_vs_noiseq     0.8693
## deseq_vs_dream      0.9218
## edger_vs_ebseq      0.8134
## edger_vs_basic      0.8546
## edger_vs_noiseq     0.8773
## edger_vs_dream      0.9290
## ebseq_vs_basic      0.8636
## ebseq_vs_noiseq     0.8986
## ebseq_vs_dream      0.7957
## basic_vs_noiseq     0.9094
## basic_vs_dream      0.8573
## noiseq_vs_dream     0.8409
t_cf_eosinophil_table_sva <- combine_de_tables(
  t_cf_eosinophil_de_sva, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_cf_table_sva-v{ver}.xlsx"))
t_cf_eosinophil_table_sva
## A set of combined differential expression results.
##                           table deseq_sigup deseq_sigdown edger_sigup
## 1 tumaco_failure_vs_tumaco_cure         116            75         112
##   edger_sigdown limma_sigup limma_sigdown
## 1            63          57            34
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_eosinophil_sig_sva <- extract_significant_genes(
  t_cf_eosinophil_table_sva,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_cf_sig_sva-v{ver}.xlsx"))
t_cf_eosinophil_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome       57         34      112         63      116         75        7
##         ebseq_down basic_up basic_down
## outcome         33        0          0

dim(t_cf_eosinophil_sig_sva$deseq$ups[[1]])
## [1] 116  84
dim(t_cf_eosinophil_sig_sva$deseq$downs[[1]])
## [1] 75 84
knitr::kable(head(t_cf_eosinophil_sig_sva$deseq$ups[[1]]))
ensembl_gene_id ensembl_transcript_id version transcript_version description gene_biotype cds_length chromosome_name strand start_position end_position hgnc_symbol uniprot_gn_symbol transcript mean_cds_len basic_logfc basic_adjp deseq_logfc deseq_adjp dream_logfc dream_adjp ebseq_logfc ebseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp noiseq_logfc noiseq_adjp basic_num basic_den basic_numvar basic_denvar basic_t basic_p deseq_basemean deseq_lfcse deseq_stat deseq_p deseq_num deseq_den dream_ave dream_t dream_p dream_b ebseq_fc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_postfc ebseq_ppee ebseq_ppde edger_logcpm edger_lr edger_p limma_ave limma_t limma_p limma_b noiseq_num noiseq_den noiseq_mean noiseq_theta noiseq_prob noiseq_p limma_adjp_ihw limma_p_zstd dream_adjp_ihw dream_p_zstd deseq_adjp_ihw deseq_p_zstd edger_adjp_ihw edger_p_zstd ebseq_adjp_ihw ebseq_p_zstd basic_adjp_ihw basic_p_zstd noiseq_adjp_ihw noiseq_p_zstd lfc_meta lfc_var lfc_varbymed p_meta p_var
ENSG00000198178 ENSG00000198178 ENST00000537530 10 1 C-type lectin domain family 4 member C [Source:HGNC Symbol;Acc:HGNC:13258] protein_coding 267 12 - 7729415 7751605 CLEC4C CLEC4C ENSG00000198178.1 510.5 3.920 0.1398 5.537 2e-03 4.768 0.0117 2.072 0.8248 5.152 0.1934 4.225 0.0191 2.247 1 2.0400 -2.764 8.784 8.946 0.0012 4.804 193.80 1.3030 4.249 0e+00 9.617 4.0806 -1.5610 5.030 0.0000 1.3490 4.205 89.396 375.93 188.58 4.095 0.8248 0.1752 2.2170 5.953 0.0147 -1.4190 4.4420 0.0002 0.1256 366.62 77.257 221.94 1.036 0.9139 0.0861 0.0158 -1.2450 0.0123 -1.3020 0.0017 -1.2450 0.1912 -1.2450 0.1527 0.8604 1 13.140 0.9751 -1.451 4.982 4.880e-03 9.796e-04 4.956e-03 7.107e-05
ENSG00000187569 ENSG00000187569 ENST00000345088 3 3 developmental pluripotency associated 3 [Source:HGNC Symbol;Acc:HGNC:19199] protein_coding 480 12 + 7711433 7717559 DPPA3 DPPA3 ENSG00000187569.3 480 3.662 0.1989 5.448 7e-03 3.969 0.0408 4.587 0.0605 4.721 0.0547 3.504 0.0470 3.622 1 -0.6872 -4.301 7.263 2.839 0.0035 3.614 23.10 1.4300 3.810 1e-04 5.866 0.4183 -3.6360 3.937 0.0006 -1.1340 24.038 2.470 59.59 22.24 21.893 0.0605 0.9395 -0.5913 9.779 0.0018 -3.3720 3.6990 0.0011 -1.6550 56.07 4.555 30.31 2.207 0.9935 0.0065 0.0339 -1.2420 0.0334 -1.3000 0.0049 -1.2420 0.0550 -1.2420 0.7668 5.8330 1 9.882 0.9751 -1.704 4.443 4.098e-01 9.225e-02 9.866e-04 6.647e-07
ENSG00000136235 ENSG00000136235 ENST00000479625 16 1 glycoprotein nmb [Source:HGNC Symbol;Acc:HGNC:4462] protein_coding undefined 7 + 23235967 23275108 GPNMB GPNMB ENSG00000136235.1 1447.5 2.102 0.4987 5.410 4e-04 4.617 0.0900 5.629 0.8546 5.374 0.0001 3.867 0.1754 4.475 1 -1.1190 -3.695 12.101 2.665 0.0621 2.576 53.03 1.1380 4.752 0e+00 6.906 1.4965 -3.2100 3.221 0.0035 -2.1580 49.486 2.881 143.07 51.41 39.921 0.8546 0.1454 0.4580 25.540 0.0000 -3.2370 2.5210 0.0184 -3.2570 125.19 5.631 65.41 2.264 0.9978 0.0022 0.1386 -1.1860 0.0918 -1.2910 0.0002 -1.1860 0.0001 -1.1860 0.1253 0.6664 1 7.044 0.6634 -1.718 4.798 5.245e-02 1.093e-02 6.124e-03 1.125e-04
ENSG00000089012 ENSG00000089012 ENST00000497407 14 2 signal regulatory protein gamma [Source:HGNC Symbol;Acc:HGNC:15757] protein_coding undefined 20 - 1629152 1657779 SIRPG SIRPG ENSG00000089012.2 880.8 1.974 0.5427 4.040 0e+00 1.758 0.6538 5.912 0.7384 4.018 0.0000 1.598 0.6625 5.479 0 0.8317 -1.681 13.876 1.355 0.0805 2.513 272.50 0.7310 5.526 0e+00 7.574 3.5336 -1.1950 1.093 0.2846 -4.9740 60.217 12.007 723.63 258.34 50.266 0.7384 0.2616 2.7060 32.750 0.0000 -1.1480 0.9807 0.3360 -5.0020 771.37 17.288 394.33 3.129 1.0000 0.0000 0.5902 -0.1572 0.5723 -0.3745 0.0000 -0.1572 0.0000 -0.1572 0.2245 1.4220 1 6.872 0.0000 -1.725 3.148 1.579e+00 5.016e-01 1.120e-01 3.763e-02
ENSG00000089127 ENSG00000089127 ENST00000540589 13 2 2’-5’-oligoadenylate synthetase 1 [Source:HGNC Symbol;Acc:HGNC:8086] protein_coding 68 12 + 112906783 112933222 OAS1 OAS1 ENSG00000089127.2 682.8 3.284 0.2669 3.933 0e+00 3.518 0.0562 4.691 0.0845 3.943 0.0000 3.339 0.0596 4.036 1 1.9510 -1.301 8.237 1.116 0.0092 3.252 184.60 0.5478 7.180 0e+00 7.841 3.9081 -0.5641 3.632 0.0012 -0.9652 25.834 18.535 479.09 177.96 23.947 0.0845 0.9155 2.1560 44.580 0.0000 -0.4596 3.4950 0.0018 -1.3000 410.17 25.003 217.58 2.621 0.9894 0.0106 0.0493 -1.2400 0.0529 -1.2980 0.0000 -1.2400 0.0000 -1.2400 0.7325 5.6770 1 8.893 0.9751 -1.691 3.722 1.794e-02 4.820e-03 5.900e-04 1.044e-06
ENSG00000137959 ENSG00000137959 ENST00000450498 16 1 interferon induced protein 44 like [Source:HGNC Symbol;Acc:HGNC:17817] protein_coding 699 1 + 78619922 78646145 IFI44L IFI44L ENSG00000137959.1 783.333333333333 3.909 0.1645 3.828 0e+00 3.369 0.0199 4.022 0.7568 3.831 0.0000 3.443 0.0123 4.334 0 5.5560 1.793 6.584 3.318 0.0020 3.763 1932.00 0.5401 7.087 0e+00 11.304 7.4755 2.8960 4.483 0.0001 1.0980 16.246 295.965 4808.31 1857.93 14.896 0.7568 0.2432 5.4900 57.400 0.0000 3.0090 4.7380 0.0001 1.6850 5616.14 278.525 2947.33 3.056 1.0000 0.0000 0.0135 -1.2450 0.0216 -1.3020 0.0000 -1.2450 0.0000 -1.2450 0.2506 1.3030 1 10.290 0.0000 -1.725 3.691 2.660e-03 7.207e-04 2.392e-05 1.716e-09
knitr::kable(head(t_cf_eosinophil_sig_sva$deseq$downs[[1]]))
ensembl_gene_id ensembl_transcript_id version transcript_version description gene_biotype cds_length chromosome_name strand start_position end_position hgnc_symbol uniprot_gn_symbol transcript mean_cds_len basic_logfc basic_adjp deseq_logfc deseq_adjp dream_logfc dream_adjp ebseq_logfc ebseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp noiseq_logfc noiseq_adjp basic_num basic_den basic_numvar basic_denvar basic_t basic_p deseq_basemean deseq_lfcse deseq_stat deseq_p deseq_num deseq_den dream_ave dream_t dream_p dream_b ebseq_fc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_postfc ebseq_ppee ebseq_ppde edger_logcpm edger_lr edger_p limma_ave limma_t limma_p limma_b noiseq_num noiseq_den noiseq_mean noiseq_theta noiseq_prob noiseq_p limma_adjp_ihw limma_p_zstd dream_adjp_ihw dream_p_zstd deseq_adjp_ihw deseq_p_zstd edger_adjp_ihw edger_p_zstd ebseq_adjp_ihw ebseq_p_zstd basic_adjp_ihw basic_p_zstd noiseq_adjp_ihw noiseq_p_zstd lfc_meta lfc_var lfc_varbymed p_meta p_var
ENSG00000179344 ENSG00000179344 ENST00000399084 16 5 major histocompatibility complex, class II, DQ beta 1 [Source:HGNC Symbol;Acc:HGNC:4944] protein_coding 786 6 - 32659467 32668383 HLA-DQB1 HLA-DQB1 ENSG00000179344.5 645.5 -5.227 0.0515 -5.676 0.0000 -7.319 0.0138 -4.507 0.0008 -5.668 0.0000 -7.612 0.0155 -5.899 0 0.0597 5.6120 5.9251 7.993 0.0001 -5.552 4151.00 0.8485 -6.689 0.0000 6.782 12.458 3.7070 -4.809 0.0001 1.843 0.0440 6266.46 275.6710 4192.72 0.0418 0.0008 0.9992 6.575 36.280 0.0000 3.5810 -4.604 0.0001 1.291 138.566 8270.46 4204.51 -3.688 1.0000 0.0000 0.0228 -1.245 0.0137 -1.3020 0.0000 -1.245 0.0000 -1.245 0.9901 6.2210 -20730 -15.180 0.0000 -1.725 -5.952 1.301e+00 -2.186e-01 3.393e-05 3.454e-09
ENSG00000112139 ENSG00000112139 ENST00000515437 16 5 MAM domain containing glycosylphosphatidylinositol anchor 1 [Source:HGNC Symbol;Acc:HGNC:19267] protein_coding 388 6 - 37630679 37699306 MDGA1 MDGA1 ENSG00000112139.5 1438.71428571429 -2.249 0.4206 -5.037 0.0015 -2.682 0.3355 -2.084 0.0001 -4.942 0.0398 -2.844 0.2584 -2.532 1 -3.3850 -0.1629 10.6461 14.783 0.0366 -3.222 149.80 1.1640 -4.327 0.0000 2.708 7.744 -1.4100 -1.996 0.0566 -3.877 0.2358 205.20 48.3754 150.91 0.2301 0.0001 0.9999 1.813 10.640 0.0011 -1.5710 -2.141 0.0421 -3.687 24.552 142.01 83.28 -1.170 0.9195 0.0805 0.1984 -1.109 0.3083 -1.1180 0.0011 -1.109 0.0277 -1.109 1.0000 6.2260 -18990 -8.808 0.9751 -1.468 -3.895 9.304e-01 -2.389e-01 1.440e-02 5.749e-04
ENSG00000203972 ENSG00000203972 ENST00000545705 10 1 glycine-N-acyltransferase like 3 [Source:HGNC Symbol;Acc:HGNC:21349] protein_coding 468 6 + 49499923 49528078 GLYATL3 GLYATL3 ENSG00000203972.1 667.5 -3.493 0.1675 -4.718 0.0498 -2.629 0.3287 -6.257 0.7136 -4.599 0.0363 -2.962 0.1916 -3.352 1 -5.7280 -3.3770 0.5218 6.712 0.0023 -2.351 27.99 1.5560 -3.032 0.0024 -1.881 2.837 -4.7950 -2.016 0.0544 -3.941 0.0131 42.18 0.5417 27.77 0.0138 0.7136 0.2864 -0.443 10.870 0.0010 -4.5450 -2.444 0.0218 -3.577 2.858 29.19 16.02 -1.461 0.9575 0.0425 0.1465 -1.175 0.3346 -1.1250 0.0361 -1.175 0.0247 -1.175 0.2995 1.5840 -9924 -6.426 0.9751 -1.589 -3.901 8.898e-02 -2.281e-02 8.413e-03 1.355e-04
ENSG00000196526 ENSG00000196526 ENST00000358461 10 6 actin filament associated protein 1 [Source:HGNC Symbol;Acc:HGNC:24017] protein_coding 2193 4 - 7758714 7939926 AFAP1 AFAP1 ENSG00000196526.6 1911 -2.168 0.4335 -3.294 0.0252 -2.375 0.3793 -3.967 0.0000 -3.293 0.0574 -2.538 0.2974 -3.791 1 0.5888 2.6700 2.1638 11.578 0.0405 -2.081 982.20 0.9856 -3.342 0.0008 6.891 10.185 1.7240 -1.864 0.0739 -4.410 0.0640 1485.49 95.0002 1004.17 0.0623 0.0000 1.0000 4.492 9.604 0.0019 1.8040 -1.999 0.0565 -4.138 128.406 1777.17 952.79 -2.550 0.9896 0.0104 0.3036 -1.062 0.3570 -1.0610 0.0280 -1.062 0.0576 -1.062 1.0000 6.2270 -3031 -5.688 0.9751 -1.692 -2.956 1.507e-01 -5.097e-02 1.976e-02 1.013e-03
ENSG00000175592 ENSG00000175592 ENST00000312562 9 7 FOS like 1, AP-1 transcription factor subunit [Source:HGNC Symbol;Acc:HGNC:13718] protein_coding 816 11 - 65892049 65900573 FOSL1 FOSL1 ENSG00000175592.7 496 -2.045 0.4818 -3.097 0.0000 -2.039 0.1876 -2.017 0.9748 -3.081 0.0000 -2.221 0.1738 -1.557 1 0.1522 1.8020 3.6253 4.212 0.0561 -1.650 267.80 0.5692 -5.441 0.0000 5.087 8.184 1.1760 -2.584 0.0158 -3.011 0.2471 363.07 89.7162 268.44 0.2384 0.9748 0.0252 2.640 30.640 0.0000 1.0720 -2.528 0.0181 -3.082 93.436 274.89 184.16 -1.214 0.9249 0.0751 0.1335 -1.187 0.1854 -1.2500 0.0000 -1.187 0.0000 -1.187 0.0310 -0.1156 -2206 -4.510 0.9751 -1.485 -2.752 2.007e-01 -7.295e-02 6.027e-03 1.090e-04
ENSG00000122877 ENSG00000122877 ENST00000637191 16 1 early growth response 2 [Source:HGNC Symbol;Acc:HGNC:3239] protein_coding 418 10 - 62811996 62919900 EGR2 EGR2 ENSG00000122877.1 1140.25 -1.878 0.5187 -2.789 0.0117 -1.437 0.4815 -2.589 0.8231 -2.779 0.0110 -2.011 0.2749 -1.495 1 -1.2330 -0.0550 0.8328 5.118 0.0731 -1.178 96.53 0.7679 -3.632 0.0003 3.932 6.721 -0.6343 -1.561 0.1308 -4.503 0.1663 136.07 22.6139 96.80 0.1592 0.8231 0.1769 1.188 14.120 0.0002 -0.7511 -2.078 0.0480 -3.767 29.831 84.08 56.96 -1.112 0.9087 0.0913 0.2254 -1.090 0.4497 -0.8758 0.0088 -1.090 0.0073 -1.090 0.1454 0.8716 -1025 -3.219 0.9751 -1.434 -2.514 2.515e-01 -1.000e-01 1.616e-02 7.617e-04

Repeat with batch in the model.

t_cf_eosinophil_de_batchvisit <- all_pairwise(t_eosinophils, model_batch = TRUE,
                                              parallel = parallel, filter = TRUE,
                                              methods = methods)
## 
##    tumaco_cure tumaco_failure 
##             17              9 
## 
## 3 2 1 
## 9 9 8
t_cf_eosinophil_de_batchvisit
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: batch in model/limma.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 tmc_flr___
## limma_vs_deseq      0.8678
## limma_vs_edger      0.8696
## limma_vs_ebseq      0.8328
## limma_vs_basic      0.9676
## limma_vs_noiseq     0.8816
## limma_vs_dream      0.9469
## deseq_vs_edger      0.9998
## deseq_vs_ebseq      0.9519
## deseq_vs_basic      0.8961
## deseq_vs_noiseq     0.9024
## deseq_vs_dream      0.8493
## edger_vs_ebseq      0.9559
## edger_vs_basic      0.8977
## edger_vs_noiseq     0.9056
## edger_vs_dream      0.8517
## ebseq_vs_basic      0.8636
## ebseq_vs_noiseq     0.8986
## ebseq_vs_dream      0.8133
## basic_vs_noiseq     0.9094
## basic_vs_dream      0.9176
## noiseq_vs_dream     0.9304
t_cf_eosinophil_table_batchvisit <- combine_de_tables(
  t_cf_eosinophil_de_batchvisit, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_cf_table_batchvisit-v{ver}.xlsx"))
t_cf_eosinophil_table_batchvisit
## A set of combined differential expression results.
##                           table deseq_sigup deseq_sigdown edger_sigup
## 1 tumaco_failure_vs_tumaco_cure          99            35         103
##   edger_sigdown limma_sigup limma_sigdown
## 1            24          35            15
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_eosinophil_sig_batchvisit <- extract_significant_genes(
  t_cf_eosinophil_table_batchvisit,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_cf_sig_batchvisit-v{ver}.xlsx"))
t_cf_eosinophil_sig_batchvisit
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome       35         15      103         24       99         35        7
##         ebseq_down basic_up basic_down
## outcome         33        0          0

dim(t_cf_eosinophil_sig_batchvisit$deseq$ups[[1]])
## [1] 99 84
dim(t_cf_eosinophil_sig_batchvisit$deseq$downs[[1]])
## [1] 35 84
knitr::kable(head(t_cf_eosinophil_sig_batchvisit$deseq$ups[[1]]))
ensembl_gene_id ensembl_transcript_id version transcript_version description gene_biotype cds_length chromosome_name strand start_position end_position hgnc_symbol uniprot_gn_symbol transcript mean_cds_len basic_logfc basic_adjp deseq_logfc deseq_adjp dream_logfc dream_adjp ebseq_logfc ebseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp noiseq_logfc noiseq_adjp basic_num basic_den basic_numvar basic_denvar basic_t basic_p deseq_basemean deseq_lfcse deseq_stat deseq_p deseq_num deseq_den dream_ave dream_t dream_p dream_b ebseq_fc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_postfc ebseq_ppee ebseq_ppde edger_logcpm edger_lr edger_p limma_ave limma_t limma_p limma_b noiseq_num noiseq_den noiseq_mean noiseq_theta noiseq_prob noiseq_p limma_adjp_ihw limma_p_zstd dream_adjp_ihw dream_p_zstd deseq_adjp_ihw deseq_p_zstd edger_adjp_ihw edger_p_zstd ebseq_adjp_ihw ebseq_p_zstd basic_adjp_ihw basic_p_zstd noiseq_adjp_ihw noiseq_p_zstd lfc_meta lfc_var lfc_varbymed p_meta p_var
ENSG00000165949 ENSG00000165949 ENST00000611954 12 4 interferon alpha inducible protein 27 [Source:HGNC Symbol;Acc:HGNC:5397] protein_coding 180 14 + 94104836 94116698 IFI27 IFI27 ENSG00000165949.4 287.454545454545 3.323 0.2504 5.668 0e+00 4.793 0.0485 5.470 0.8279 5.624 0e+00 4.397 0.0591 3.963 1.000 -0.1291 -3.3160 7.379 1.696 0.0077 3.186 54.63 0.8188 6.923 0 7.505 1.8370 -2.7330 4.106 0.0003 -0.8668 44.34 3.243 144.20 52.03 35.61 0.8279 0.1721 0.4882 47.95 0 -2.6550 3.858 0.0007 -1.1070 118.68 7.612 63.15 1.930 0.9823 0.0177 0.0453 -1.3740 0.0350 -1.422 0e+00 -1.3740 0e+00 -1.3740 0.1420 0.8403 1 8.712 0.9751 -1.668 5.230 0.000e+00 0.000e+00 2.264e-04 1.537e-07
ENSG00000187569 ENSG00000187569 ENST00000345088 3 3 developmental pluripotency associated 3 [Source:HGNC Symbol;Acc:HGNC:19199] protein_coding 480 12 + 7711433 7717559 DPPA3 DPPA3 ENSG00000187569.3 480 3.662 0.1989 5.537 4e-04 4.906 0.0485 4.587 0.0605 5.386 1e-04 4.404 0.0351 3.622 1.000 -0.6872 -4.3010 7.263 2.839 0.0035 3.614 23.10 1.1660 4.747 0 5.915 0.3782 -3.6360 4.124 0.0003 -1.1500 24.04 2.470 59.59 22.24 21.89 0.0605 0.9395 -0.6406 25.31 0 -3.3720 4.263 0.0002 -0.7244 56.07 4.555 30.31 2.207 0.9935 0.0065 0.0300 -1.3750 0.0334 -1.422 3e-04 -1.3750 1e-04 -1.3750 0.7668 5.8330 1 9.882 0.9751 -1.704 5.088 3.906e-02 7.677e-03 7.965e-05 1.843e-08
ENSG00000136235 ENSG00000136235 ENST00000479625 16 1 glycoprotein nmb [Source:HGNC Symbol;Acc:HGNC:4462] protein_coding undefined 7 + 23235967 23275108 GPNMB GPNMB ENSG00000136235.1 1447.5 2.102 0.4987 5.426 2e-04 3.031 0.3933 5.629 0.8546 5.360 0e+00 2.104 0.5947 4.475 1.000 -1.1190 -3.6950 12.101 2.665 0.0621 2.576 53.03 1.0740 5.053 0 7.515 2.0897 -3.2100 2.161 0.0400 -3.6970 49.49 2.881 143.07 51.41 39.92 0.8546 0.1454 0.4259 29.50 0 -3.2370 1.413 0.1695 -4.4990 125.19 5.631 65.41 2.264 0.9978 0.0022 0.5334 -0.8155 0.2802 -1.291 1e-04 -0.8155 0e+00 -0.8155 0.1253 0.6664 1 7.044 0.6634 -1.718 4.060 2.227e+00 5.485e-01 5.650e-02 9.577e-03
ENSG00000089127 ENSG00000089127 ENST00000540589 13 2 2’-5’-oligoadenylate synthetase 1 [Source:HGNC Symbol;Acc:HGNC:8086] protein_coding 68 12 + 112906783 112933222 OAS1 OAS1 ENSG00000089127.2 682.8 3.284 0.2669 4.820 0e+00 4.229 0.1407 4.691 0.0845 4.830 0e+00 3.978 0.1341 4.036 1.000 1.9510 -1.3010 8.237 1.116 0.0092 3.252 184.60 0.7144 6.746 0 8.840 4.0197 -0.5641 3.205 0.0035 -1.8560 25.83 18.535 479.09 177.96 23.95 0.0845 0.9155 2.1430 56.76 0 -0.4596 3.160 0.0040 -1.9060 410.17 25.003 217.58 2.621 0.9894 0.0106 0.1062 -1.3630 0.1038 -1.411 0e+00 -1.3630 0e+00 -1.3630 0.7325 5.6770 1 8.893 0.9751 -1.691 4.652 5.441e-02 1.170e-02 1.328e-03 5.293e-06
ENSG00000111335 ENSG00000111335 ENST00000551603 12 1 2’-5’-oligoadenylate synthetase 2 [Source:HGNC Symbol;Acc:HGNC:8087] protein_coding 183 12 + 112978395 113011723 OAS2 OAS2 ENSG00000111335.1 1319.5 2.537 0.3953 4.447 0e+00 3.840 0.1974 4.238 0.4415 4.461 0e+00 3.601 0.2035 3.944 0.943 4.0180 0.8398 12.517 3.025 0.0293 3.178 1028.00 0.8157 5.451 0 11.444 6.9971 1.6630 2.826 0.0089 -2.5810 18.87 137.565 2596.53 988.75 17.44 0.4415 0.5585 4.5830 38.11 0 1.7970 2.779 0.0100 -2.7210 2117.85 137.605 1127.73 2.734 0.9999 0.0001 0.2023 -1.3430 0.1659 -1.393 0e+00 -1.3430 0e+00 -1.3430 0.5743 3.3540 1 8.690 0.0315 -1.725 4.110 6.269e-02 1.525e-02 3.340e-03 3.347e-05
ENSG00000137959 ENSG00000137959 ENST00000450498 16 1 interferon induced protein 44 like [Source:HGNC Symbol;Acc:HGNC:17817] protein_coding 699 1 + 78619922 78646145 IFI44L IFI44L ENSG00000137959.1 783.333333333333 3.909 0.1645 4.200 0e+00 4.025 0.0544 4.022 0.7568 4.213 0e+00 3.902 0.0422 4.334 0.000 5.5560 1.7930 6.584 3.318 0.0020 3.763 1932.00 0.7590 5.534 0 12.253 8.0528 2.8960 3.985 0.0005 -0.0497 16.25 295.965 4808.31 1857.93 14.90 0.7568 0.2432 5.4890 40.52 0 3.0090 4.118 0.0003 0.2407 5616.14 278.525 2947.33 3.056 1.0000 0.0000 0.0448 -1.3750 0.0666 -1.421 0e+00 -1.3750 0e+00 -1.3750 0.2506 1.3030 1 10.290 0.0000 -1.725 4.204 7.374e-02 1.754e-02 1.151e-04 3.976e-08
knitr::kable(head(t_cf_eosinophil_sig_batchvisit$deseq$downs[[1]]))
ensembl_gene_id ensembl_transcript_id version transcript_version description gene_biotype cds_length chromosome_name strand start_position end_position hgnc_symbol uniprot_gn_symbol transcript mean_cds_len basic_logfc basic_adjp deseq_logfc deseq_adjp dream_logfc dream_adjp ebseq_logfc ebseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp noiseq_logfc noiseq_adjp basic_num basic_den basic_numvar basic_denvar basic_t basic_p deseq_basemean deseq_lfcse deseq_stat deseq_p deseq_num deseq_den dream_ave dream_t dream_p dream_b ebseq_fc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_postfc ebseq_ppee ebseq_ppde edger_logcpm edger_lr edger_p limma_ave limma_t limma_p limma_b noiseq_num noiseq_den noiseq_mean noiseq_theta noiseq_prob noiseq_p limma_adjp_ihw limma_p_zstd dream_adjp_ihw dream_p_zstd deseq_adjp_ihw deseq_p_zstd edger_adjp_ihw edger_p_zstd ebseq_adjp_ihw ebseq_p_zstd basic_adjp_ihw basic_p_zstd noiseq_adjp_ihw noiseq_p_zstd lfc_meta lfc_var lfc_varbymed p_meta p_var
ENSG00000189430 ENSG00000189430 ENST00000338835 13 9 natural cytotoxicity triggering receptor 1 [Source:HGNC Symbol;Acc:HGNC:6731] protein_coding 864 19 + 54906148 54916140 NCR1 NCR1 ENSG00000189430.9 798.5 -3.624 0.1472 -5.820 0.0002 -2.5340 0.4295 -5.817 0.0000 -5.752 0.0019 -3.214 0.2894 -3.025 1 -4.4710 -1.0630 1.835 11.567 0.0014 -3.408 93.09 1.1550 -5.038 0e+00 1.4989 7.319 -2.587 -2.0530 0.0502 -3.8380 0.0177 144.85 2.560 95.59 0.0182 0.0000 1.0000 1.0570 19.19 0e+00 -2.621 -2.436 0.0220 -3.3850 5.676 46.20 25.94 -2.1077 0.9822 0.0178 0.1690 -1.303 0.2756 -1.2570 0.0001 -1.303 0.0012 -1.303 0.7824 6.227 -8796 -9.316 0.9751 -1.668 -5.110 1.583e+00 -3.098e-01 7.344e-03 1.615e-04
ENSG00000179344 ENSG00000179344 ENST00000399084 16 5 major histocompatibility complex, class II, DQ beta 1 [Source:HGNC Symbol;Acc:HGNC:4944] protein_coding 786 6 - 32659467 32668383 HLA-DQB1 HLA-DQB1 ENSG00000179344.5 645.5 -5.227 0.0515 -5.667 0.0000 -5.5390 0.0390 -4.507 0.0008 -5.653 0.0006 -5.936 0.0332 -5.899 0 0.0597 5.6120 5.925 7.993 0.0001 -5.552 4151.00 0.8879 -6.382 0e+00 8.4098 14.076 3.707 -4.3850 0.0002 0.9012 0.0440 6266.46 275.671 4192.72 0.0418 0.0008 0.9992 6.5750 21.99 0e+00 3.581 -4.357 0.0002 0.8177 138.566 8270.46 4204.51 -3.6877 1.0000 0.0000 0.0336 -1.376 0.0259 -1.4220 0.0000 -1.376 0.0007 -1.376 0.9901 6.221 -20730 -15.180 0.0000 -1.725 -5.464 1.039e-01 -1.902e-02 6.255e-05 1.123e-08
ENSG00000162669 ENSG00000162669 ENST00000427444 16 1 helicase for meiosis 1 [Source:HGNC Symbol;Acc:HGNC:20193] protein_coding 589 1 - 91260766 91404856 HFM1 HFM1 ENSG00000162669.1 1528.4 -3.444 0.1672 -4.617 0.0012 -1.8420 0.3845 -5.349 0.0008 -4.588 0.0054 -2.665 0.1784 -3.246 1 -3.0190 -0.0765 2.110 8.425 0.0021 -2.942 207.70 1.0200 -4.526 0e+00 4.2354 8.853 -1.469 -2.1860 0.0379 -3.6080 0.0245 332.37 8.142 220.14 0.0241 0.0008 0.9992 2.1480 16.51 0e+00 -1.450 -2.912 0.0073 -2.4740 10.706 101.59 56.15 -1.8950 0.9634 0.0366 0.1410 -1.352 0.2994 -1.2980 0.0012 -1.352 0.0031 -1.352 0.8276 6.222 -5395 -8.042 0.9751 -1.608 -3.922 2.638e-01 -6.727e-02 2.452e-03 1.764e-05
ENSG00000167634 ENSG00000167634 ENST00000328092 12 9 NLR family pyrin domain containing 7 [Source:HGNC Symbol;Acc:HGNC:22947] protein_coding 3030 19 - 54923509 54966312 NLRP7 NLRP7 ENSG00000167634.9 2077.44444444444 -2.682 0.3229 -4.061 0.0071 -0.9355 0.7928 -4.236 0.0168 -4.004 0.0317 -1.875 0.4968 -1.571 1 -4.1970 -2.2500 0.258 8.472 0.0153 -1.947 27.08 1.0170 -3.995 1e-04 0.8671 4.928 -3.312 -0.9051 0.3737 -4.7730 0.0531 41.32 2.183 27.77 0.0550 0.0168 0.9832 -0.7663 12.24 5e-04 -3.363 -1.721 0.0971 -4.2100 5.676 16.86 11.27 -1.1972 0.9233 0.0767 0.3157 -1.055 0.7221 -0.1889 0.0044 -1.055 0.0216 -1.055 0.8001 6.118 -940200 -5.322 0.9751 -1.481 -3.179 1.172e+00 -3.687e-01 3.255e-02 3.126e-03
ENSG00000196526 ENSG00000196526 ENST00000358461 10 6 actin filament associated protein 1 [Source:HGNC Symbol;Acc:HGNC:24017] protein_coding 2193 4 - 7758714 7939926 AFAP1 AFAP1 ENSG00000196526.6 1911 -2.168 0.4335 -3.879 0.0038 -2.0550 0.5347 -3.967 0.0000 -3.877 0.0088 -2.357 0.3886 -3.791 1 0.5888 2.6700 2.164 11.578 0.0405 -2.081 982.20 0.9252 -4.192 0e+00 6.7815 10.660 1.724 -1.7170 0.0978 -4.5770 0.0640 1485.49 95.000 1004.17 0.0623 0.0000 1.0000 4.4950 15.42 1e-04 1.804 -2.067 0.0489 -4.0740 128.406 1777.17 952.79 -2.5503 0.9896 0.0104 0.3539 -1.215 0.4110 -1.1000 0.0041 -1.215 0.0090 -1.215 1.0000 6.227 -3031 -5.688 0.9751 -1.692 -3.320 3.403e-01 -1.025e-01 1.633e-02 7.942e-04
ENSG00000277150 ENSG00000277150 ENST00000622749 1 1 coagulation factor VIII associated 3 [Source:HGNC Symbol;Acc:HGNC:31850] protein_coding 1116 X - 155456914 155458672 F8A3 F8A1 ENSG00000277150.1 1116 -3.020 0.2249 -3.788 0.0153 -0.8834 0.7374 -4.133 0.1777 -3.704 0.0589 -1.712 0.3848 -1.821 1 -4.5610 -2.3170 1.574 6.415 0.0059 -2.244 21.72 1.0170 -3.724 2e-04 1.9848 5.772 -3.641 -1.0960 0.2830 -4.6810 0.0570 34.05 1.931 22.93 0.0606 0.1777 0.8223 -1.5770 10.78 1e-03 -3.506 -2.080 0.0476 -3.8470 5.524 19.52 12.52 -0.9781 0.8722 0.1278 0.2415 -1.219 0.6628 -0.4884 0.0102 -1.219 0.0375 -1.219 0.8350 5.070 -2709000 -6.134 0.9751 -1.317 -2.842 9.067e-01 -3.191e-01 1.628e-02 7.364e-04

Repeat with visit in the condition contrast.

visitcf_factor <- paste0("v", pData(t_eosinophils)[["visitnumber"]], "_",
                         pData(t_eosinophils)[["finaloutcome"]])
t_eosinophil_visitcf <- set_expt_conditions(t_eosinophils, fact = visitcf_factor)
## The numbers of samples by condition are:
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          5          3          6          3          6          3
t_cf_eosinophil_visits_de_sva <- all_pairwise(t_eosinophil_visitcf, model_batch = "svaseq",
                                              parallel = parallel, filter = TRUE,
                                              methods = methods)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          5          3          6          3          6          3
t_cf_eosinophil_visits_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
t_cf_eosinophil_visits_table_sva <- combine_de_tables(
   t_cf_eosinophil_visits_de_sva, keepers = visitcf_contrasts, scale_p = TRUE,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_visitcf_table_sva-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
t_cf_eosinophil_visits_table_sva
## A set of combined differential expression results.
##                   table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 v1_failure_vs_v1_cure           9            11           2             3
## 2 v2_failure_vs_v2_cure           4             3           5             2
## 3 v3_failure_vs_v3_cure          14             7          17             2
##   limma_sigup limma_sigdown
## 1           0             1
## 2           0             0
## 3           0             0
## Plot describing unique/shared genes in a differential expression table.

t_cf_eosinophil_visits_sig_sva <- extract_significant_genes(
  t_cf_eosinophil_visits_table_sva,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_visitcf_sig_sva-v{ver}.xlsx"))
t_cf_eosinophil_visits_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##      limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## v1cf        0          1        2          3        9         11        4
## v2cf        0          0        5          2        4          3       11
## v3cf        0          0       17          2       14          7        3
##      ebseq_down basic_up basic_down
## v1cf         86        0          0
## v2cf         18        0          0
## v3cf         10        0          0

dim(t_cf_eosinophil_visits_sig_sva$deseq$ups[[1]])
## [1]  9 84
dim(t_cf_eosinophil_visits_sig_sva$deseq$downs[[1]])
## [1] 11 84
knitr::kable(head(t_cf_eosinophil_visits_sig_sva$deseq$ups[[1]]))
ensembl_gene_id ensembl_transcript_id version transcript_version description gene_biotype cds_length chromosome_name strand start_position end_position hgnc_symbol uniprot_gn_symbol transcript mean_cds_len basic_logfc basic_adjp deseq_logfc deseq_adjp dream_logfc dream_adjp ebseq_logfc ebseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp noiseq_logfc noiseq_adjp basic_num basic_den basic_numvar basic_denvar basic_t basic_p deseq_basemean deseq_lfcse deseq_stat deseq_p deseq_num deseq_den dream_ave dream_t dream_p dream_b ebseq_fc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_postfc ebseq_ppee ebseq_ppde edger_logcpm edger_lr edger_p limma_ave limma_t limma_p limma_b noiseq_num noiseq_den noiseq_mean noiseq_theta noiseq_prob noiseq_p limma_adjp_ihw limma_p_zstd dream_adjp_ihw dream_p_zstd deseq_adjp_ihw deseq_p_zstd edger_adjp_ihw edger_p_zstd ebseq_adjp_ihw ebseq_p_zstd basic_adjp_ihw basic_p_zstd noiseq_adjp_ihw noiseq_p_zstd lfc_meta lfc_var lfc_varbymed p_meta p_var
ENSG00000143416 ENSG00000143416 ENST00000443708 21 5 selenium binding protein 1 [Source:HGNC Symbol;Acc:HGNC:10719] protein_coding 372 1 - 151364304 151372707 SELENBP1 SELENBP1 ENSG00000143416.5 727.272727272727 0.6636 0.9946 21.040 0.0292 6.664 0.3331 13.6378 0.7073 6.667 0.8813 6.969 0.2738 4.3217 1 -2.9540 -5.0410 29.4269 0.4130 0.5742 2.0870 20.49 5.0190 4.192 0e+00 -0.4417 -21.477 -4.9810 2.606 0.0160 -3.5460 12746.087 0.00 127.45 47.79 249.156 0.7073 0.2927 -0.7976 2.956 0.0856 -4.6440 3.162 0.0045 -2.8790 53.22 2.661 27.94 1.1523 0.9511 0.0489 0.2738 -1.433 0.3524 -1.373 0.0226 -1.433 0.7929 -1.433 0.2363 0.5755 1 4.3750 0.4164 -1.1210 9.641 2.099e+01 2.178e+00 3.004e-02 2.319e-03
ENSG00000136732 ENSG00000136732 ENST00000459787 16 1 glycophorin C (Gerbich blood group) [Source:HGNC Symbol;Acc:HGNC:4704] protein_coding undefined 2 + 126656133 126696667 GYPC GYPC ENSG00000136732.1 347 1.2540 0.9946 5.298 0.0465 4.031 0.3123 4.0095 0.9653 5.290 0.0505 4.195 0.3253 4.0248 1 4.1470 1.8540 9.5905 0.7295 0.3274 2.2930 601.60 1.3500 3.925 1e-04 12.1164 6.818 2.1910 2.834 0.0095 -2.6190 16.105 198.13 3191.08 1320.49 12.632 0.9653 0.0347 3.8060 17.080 0.0000 2.2010 2.907 0.0082 -2.5120 3558.42 218.611 1888.51 1.4435 0.9490 0.0510 0.3253 -1.421 0.3208 -1.394 0.0418 -1.421 0.0558 -1.421 0.0524 -0.3585 1 4.8060 0.4164 -1.1150 5.055 4.846e-01 9.587e-02 2.758e-03 2.181e-05
ENSG00000136689 ENSG00000136689 ENST00000472292 18 1 interleukin 1 receptor antagonist [Source:HGNC Symbol;Acc:HGNC:6000] protein_coding undefined 2 + 113107214 113134016 IL1RN IL1RN ENSG00000136689.1 484.2 2.1950 0.9946 4.047 0.0292 3.608 0.2141 1.1638 0.6966 4.009 0.0602 3.902 0.2145 2.0500 1 -0.1165 -1.7740 0.6101 1.8351 0.0707 1.6570 43.99 0.9437 4.289 0e+00 6.7104 2.663 -0.8124 3.775 0.0010 -1.3260 2.240 19.86 44.50 29.10 2.161 0.6966 0.3034 0.0573 16.080 0.0001 -0.7526 4.085 0.0005 -0.7619 57.68 13.928 35.80 1.1572 0.9485 0.0515 0.2144 -1.446 0.1971 -1.422 0.0203 -1.446 0.0632 -1.446 0.2493 0.6145 1 3.4740 0.4164 -1.1130 4.002 1.351e-03 3.376e-04 1.883e-04 6.705e-08
ENSG00000169429 ENSG00000169429 ENST00000401931 11 1 C-X-C motif chemokine ligand 8 [Source:HGNC Symbol;Acc:HGNC:6025] protein_coding 288 4 + 73740541 73743716 CXCL8 CXCL8 ENSG00000169429.1 294 0.3227 0.9946 3.654 0.0465 4.434 0.2287 0.6389 0.9741 3.645 0.0448 4.721 0.2145 0.9802 1 0.8932 0.5284 3.2382 0.9915 0.7698 0.3648 281.80 0.9314 3.923 1e-04 8.5916 4.937 0.7983 3.595 0.0016 -1.1320 1.557 80.86 125.92 97.76 1.455 0.9741 0.0259 2.7020 18.170 0.0000 0.8090 3.852 0.0009 -0.6052 147.68 74.856 111.27 0.4793 0.9080 0.0920 0.2144 -1.445 0.2226 -1.420 0.0356 -1.445 0.0480 -1.445 0.0307 -0.3901 1 0.7655 0.4164 -0.9926 3.957 5.385e-01 1.361e-01 3.224e-04 2.176e-07
ENSG00000135862 ENSG00000135862 ENST00000258341 6 5 laminin subunit gamma 1 [Source:HGNC Symbol;Acc:HGNC:6492] protein_coding 4830 1 + 183023420 183145592 LAMC1 LAMC1 ENSG00000135862.5 2471.5 1.4800 0.9946 3.168 0.0488 2.838 0.2799 0.8170 0.8664 3.157 0.1489 2.875 0.2422 1.3755 1 0.7111 -0.8383 1.0858 3.6722 0.1895 1.5490 74.31 0.8152 3.886 1e-04 7.2209 4.053 0.0654 3.164 0.0044 -2.0790 1.762 47.92 84.43 61.61 1.690 0.8664 0.1336 0.7674 12.500 0.0004 0.1736 3.369 0.0028 -1.6790 95.47 36.794 66.13 0.6791 0.9196 0.0804 0.2421 -1.439 0.2733 -1.410 0.0356 -1.439 0.1218 -1.439 0.1172 -0.0003 1 3.2470 0.4164 -1.0270 3.075 2.285e-04 7.430e-05 1.089e-03 2.115e-06
ENSG00000105889 ENSG00000105889 ENST00000424363 15 5 STEAP family member 1B [Source:HGNC Symbol;Acc:HGNC:41907] protein_coding 762 7 - 22419444 22727613 STEAP1B STEAP1B ENSG00000105889.5 794.75 2.0340 0.9946 1.952 0.0339 1.536 0.2141 0.6165 0.9309 1.961 0.1193 1.736 0.1766 0.9709 1 1.9180 1.0580 0.2279 0.5140 0.0900 0.8599 98.64 0.4730 4.127 0e+00 7.9468 5.995 1.0130 3.858 0.0008 -0.5549 1.533 107.00 164.06 128.40 1.513 0.9309 0.0691 1.1870 13.590 0.0002 1.0240 4.730 0.0001 1.2500 232.04 118.381 175.21 0.5638 0.9145 0.0855 0.1766 -1.447 0.1971 -1.422 0.0217 -1.447 0.1035 -1.447 0.0648 -0.2337 1 1.8030 0.4164 -1.0120 1.868 7.500e-03 4.016e-03 1.216e-04 9.417e-09
knitr::kable(head(t_cf_eosinophil_visits_sig_sva$deseq$downs[[1]]))
ensembl_gene_id ensembl_transcript_id version transcript_version description gene_biotype cds_length chromosome_name strand start_position end_position hgnc_symbol uniprot_gn_symbol transcript mean_cds_len basic_logfc basic_adjp deseq_logfc deseq_adjp dream_logfc dream_adjp ebseq_logfc ebseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp noiseq_logfc noiseq_adjp basic_num basic_den basic_numvar basic_denvar basic_t basic_p deseq_basemean deseq_lfcse deseq_stat deseq_p deseq_num deseq_den dream_ave dream_t dream_p dream_b ebseq_fc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_postfc ebseq_ppee ebseq_ppde edger_logcpm edger_lr edger_p limma_ave limma_t limma_p limma_b noiseq_num noiseq_den noiseq_mean noiseq_theta noiseq_prob noiseq_p limma_adjp_ihw limma_p_zstd dream_adjp_ihw dream_p_zstd deseq_adjp_ihw deseq_p_zstd edger_adjp_ihw edger_p_zstd ebseq_adjp_ihw ebseq_p_zstd basic_adjp_ihw basic_p_zstd noiseq_adjp_ihw noiseq_p_zstd lfc_meta lfc_var lfc_varbymed p_meta p_var
ENSG00000129295 ENSG00000129295 ENST00000522789 9 5 leucine rich repeat containing 6 [Source:HGNC Symbol;Acc:HGNC:16725] protein_coding 621 8 - 132570416 132675592 LRRC6 LRRC6 ENSG00000129295.5 998.375 -2.3670 0.9946 -4.504 0.0210 -4.670 0.2141 -2.7493 0.0409 -4.506 0.0448 -4.525 0.2264 -2.4407 1 0.8385 3.226 1.6048 2.4094 0.0628 -2.3870 357.7 0.9891 -4.554 0e+00 5.009 9.513 2.201 -3.738 0.0011 -0.7583 0.1487 629.8 93.66 428.8 0.1450 0.0409 0.9591 3.048 18.13 0e+00 2.194 -3.609 0.0015 -1.0380 122.7 666.2 394.4 -1.0714 0.9557 0.0443 0.2264 -1.443 0.1609 -1.421 0.0203 -1.443 0.0480 -1.443 0.9875 2.9880 -1964.000 -5.0020 0.4164 -1.1350 -4.671 3.654e-01 -7.823e-02 5.246e-04 7.855e-07
ENSG00000140090 ENSG00000140090 ENST00000526482 17 1 solute carrier family 24 member 4 [Source:HGNC Symbol;Acc:HGNC:10978] protein_coding undefined 14 + 92322581 92501483 SLC24A4 SLC24A4 ENSG00000140090.1 1388.6 -1.0630 0.9946 -3.452 0.0465 -3.501 0.2652 -1.2758 0.9609 -3.445 0.1115 -3.286 0.3003 -0.9902 1 0.4640 1.562 2.0840 1.8659 0.3460 -1.0980 194.0 0.8672 -3.980 1e-04 4.475 7.926 1.560 -3.286 0.0033 -1.7060 0.4130 183.4 75.75 143.0 0.3983 0.9609 0.0391 2.181 14.22 2e-04 1.560 -3.011 0.0064 -2.2390 103.0 204.6 153.8 -0.3861 0.8614 0.1386 0.3003 -1.427 0.2516 -1.414 0.0307 -1.427 0.1035 -1.427 0.0495 -0.3425 -172.600 -2.3000 0.4472 -0.8542 -3.447 4.091e-02 -1.187e-02 2.213e-03 1.320e-05
ENSG00000120049 ENSG00000120049 ENST00000343195 19 8 potassium voltage-gated channel interacting protein 2 [Source:HGNC Symbol;Acc:HGNC:15522] protein_coding 663 10 - 101825974 101843920 KCNIP2 KCNIP2 ENSG00000120049.8 679.2 -1.3150 0.9946 -1.956 0.0001 -2.216 0.0314 -1.1698 0.9280 -1.957 0.0068 -2.038 0.0446 -0.8999 1 2.9440 3.887 1.1125 0.7187 0.2664 -0.9432 629.3 0.3415 -5.729 0e+00 7.752 9.708 3.696 -6.173 0.0000 4.5490 0.4445 814.0 361.80 644.4 0.4356 0.9280 0.0720 3.861 24.77 0e+00 3.710 -6.053 0.0000 4.3070 469.4 875.8 672.6 -0.5744 0.9304 0.0696 0.0446 -1.448 0.0314 -1.425 0.0001 -1.448 0.0076 -1.448 0.0915 -0.2231 -16.900 -1.9760 0.4164 -1.0590 -2.001 8.748e-03 -4.372e-03 1.629e-06 5.185e-12
ENSG00000089335 ENSG00000089335 ENST00000502743 21 5 zinc finger protein 302 [Source:HGNC Symbol;Acc:HGNC:13848] protein_coding 360 19 + 34677639 34686397 ZNF302 ZNF302 ENSG00000089335.5 803.25 -1.5630 0.9946 -1.763 0.0465 -2.202 0.1999 -1.0398 0.5318 -1.763 0.1323 -1.975 0.1762 -0.7208 1 1.9470 2.847 0.7883 0.3437 0.2137 -0.8999 294.4 0.4451 -3.962 1e-04 6.794 8.557 2.642 -4.901 0.0001 1.7480 0.4864 365.2 177.62 294.8 0.4825 0.5318 0.4682 2.775 13.21 3e-04 2.644 -5.118 0.0000 2.2240 253.4 417.7 335.6 -0.4143 0.8741 0.1259 0.1762 -1.448 0.1609 -1.425 0.0287 -1.448 0.1178 -1.448 0.4589 1.2110 -15.230 -1.8850 0.4472 -0.8918 -1.860 2.803e-02 -1.507e-02 1.306e-04 1.664e-08
ENSG00000169330 ENSG00000169330 ENST00000305428 9 8 membrane integral NOTCH2 associated receptor 1 [Source:HGNC Symbol;Acc:HGNC:29172] protein_coding 2751 15 + 79432336 79472304 MINAR1 MINAR1 ENSG00000169330.8 2658 -0.7188 0.9946 -1.621 0.0292 -1.859 0.2141 -0.7262 0.9063 -1.622 0.0505 -1.718 0.2145 -0.3545 1 4.3750 4.695 0.1995 0.6554 0.4993 -0.3195 1482.0 0.3843 -4.218 0e+00 8.983 10.604 4.913 -4.336 0.0003 0.5512 0.6045 1439.1 869.93 1225.7 0.5975 0.9063 0.0937 5.098 17.09 0e+00 4.935 -4.533 0.0002 0.9596 1215.2 1553.7 1384.4 -0.3327 0.8341 0.1659 0.2144 -1.447 1.0000 -1.424 0.0353 -1.447 1.0000 -1.447 0.1190 -0.1447 -1.123 -0.6686 0.4663 -0.7729 -1.659 8.008e-04 -4.828e-04 7.427e-05 5.882e-09
ENSG00000282246 ENSG00000282246 ENST00000596044 1 5 novel protein protein_coding 57 10 + 13610047 13655929 ENSG00000282246.5 257 -0.7066 0.9946 -1.575 0.0465 -1.673 0.2141 -0.7959 0.9518 -1.575 0.1115 -1.490 0.2145 -0.3864 1 3.2860 3.645 0.2675 0.8440 0.5063 -0.3589 556.1 0.4018 -3.921 1e-04 7.883 9.458 3.543 -3.907 0.0007 -0.3918 0.5760 711.5 409.82 598.4 0.5635 0.9518 0.0482 3.688 14.19 2e-04 3.546 -3.824 0.0009 -0.6119 590.2 771.4 680.8 -0.2528 0.7316 0.2684 0.2144 -1.445 0.1971 -1.423 0.0647 -1.445 0.1140 -1.445 0.0630 -0.3095 -2.869 -0.7512 0.5820 -0.4678 -1.556 3.292e-03 -2.115e-03 3.915e-04 2.120e-07

10 Compare to Visit explicitly in the model

As a reminder, there are a few genes of particular interest:

expected_genes <- c("IFI44L", "IFI27", "PRR5", "PRR5-ARHGAP8", "RHCE",
                    "FBXO39", "RSAD2", "SMTNL1", "USP18", "AFAP1")
annot <- fData(t_monocytes)
wanted_idx <- annot[["hgnc_symbol"]] %in% expected_genes
expected_ensg <- rownames(annot)[wanted_idx]

10.1 Monocytes

Either above or below this section I have a nearly identical block which seeks to demonstrate the similarities/difference observed between my preferred/simplified model vs. a more explicitly correct and complex model. If the trend holds from what we observed with the eosinophils and neutrophils, I would expect to see that the results are marginally ‘better’ (as defined by the strength of the perceived interleukin response and raw number of ‘significant’ genes); but I remain worried that this will prove a more brittle and error-prone analysis.

10.1.1 Filter the data and perform svaseq

Start out by extracting the perceived svs via svaseq on the filtered input.

## The original pairwise invocation with sva:
##t_cf_monocyte_de_sva <- all_pairwise(t_monocyte, model_batch = "svaseq",
##                                     filter = TRUE, parallel = FALSE,
##                                     methods = methods)
test_monocytes <- normalize_expt(t_monocytes, filter = "simple")
## Removing 0 low-count genes (10862 remaining).
test_mono_design <- pData(test_monocytes)
test_formula <- as.formula("~ finaloutcome + visitnumber")
test_model <- model.matrix(test_formula, data = test_mono_design)
null_formula <- as.formula("~ visitnumber")
null_model <- model.matrix(null_formula, data = test_mono_design)

linear_mtrx <- exprs(test_monocytes)
l2_mtrx <- log2(linear_mtrx + 1)
chosen_surrogates <- sva::num.sv(dat = l2_mtrx, mod = test_model)
chosen_surrogates
## [1] 2
surrogate_result <- sva::svaseq(
  dat = linear_mtrx, n.sv = chosen_surrogates, mod = test_model, mod0 = null_model)
## Number of significant surrogate variables is:  2 
## Iteration (out of 5 ):1  2  3  4  5
model_adjust <- as.matrix(surrogate_result[["sv"]])

10.1.2 Add the svs to the data model and create a new DESeq2 dataset

We can now create a new DESeq2 dataset which takes these putative surrogates into account.

colnames(model_adjust) <- paste0("SV", seq_len(chosen_surrogates))
rownames(model_adjust) <- rownames(pData(test_monocytes))
addition_string <- ""
for (sv in colnames(model_adjust)) {
  addition_string <- paste0(addition_string, " + ", sv)
}
longer_model <- as.formula(glue("~ finaloutcome + visitnumber{addition_string}"))
mono_design_svs <- cbind(test_mono_design, model_adjust)

summarized <- DESeq2::DESeqDataSetFromMatrix(countData = linear_mtrx,
                                             colData = mono_design_svs,
                                             design = longer_model)
## converting counts to integer mode

10.1.3 Run DESeq and compare the results to our previous invocation

In order to compare these and the previous results, I tend to rely on simple correlations and aucc plots. I have been reading the modelr code recently and it looks like there is a suite of other metrics which might be more appropriate.

deseq_run <- DESeq2::DESeq(summarized)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
deseq_table <- as.data.frame(DESeq2::results(object = deseq_run,
                                             contrast = c("finaloutcome", "failure", "cure"),
                                             format = "DataFrame"))

big_table <- t_cf_monocyte_table_sva[["data"]][["outcome"]]
only_deseq <- big_table[, c("deseq_logfc", "deseq_adjp")]
merged <- merge(deseq_table, only_deseq, by = "row.names")
rownames(merged) <- merged[["Row.names"]]
merged[["Row.names"]] <- NULL

cor_value <- cor.test(merged[["log2FoldChange"]], merged[["deseq_logfc"]])
cor_value
## 
##  Pearson's product-moment correlation
## 
## data:  merged[["log2FoldChange"]] and merged[["deseq_logfc"]]
## t = 1075, df = 10860, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9952 0.9955
## sample estimates:
##    cor 
## 0.9953
logfc_plotter <- plot_linear_scatter(merged[, c("log2FoldChange", "deseq_logfc")],
                                     add_cor = TRUE, add_rsq = TRUE, identity = TRUE,
                                     add_equation = TRUE)
logfc_plot <- logfc_plotter[["scatter"]] +
  xlab("DESeq2 log2FC: Visit explicitly in model") +
  ylab("DESeq2 log2FC: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (pearson)"))
pp(file = "figures/compare_cf_and_visit_in_model_monocyte_logfc.svg")
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 9th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (10862).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 9th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (10862).
## x Fix the following mappings: `colour`.
cor_value <- cor.test(merged[["padj"]], merged[["deseq_adjp"]], method = "spearman")
## Warning in cor.test.default(merged[["padj"]], merged[["deseq_adjp"]], method =
## "spearman"): Cannot compute exact p-value with ties
cor_value
## 
##  Spearman's rank correlation rho
## 
## data:  merged[["padj"]] and merged[["deseq_adjp"]]
## S = 1.3e+09, p-value <2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##    rho 
## 0.9938
adjp_plotter <- plot_linear_scatter(merged[, c("padj", "deseq_adjp")])
adjp_plot <- adjp_plotter[["scatter"]] +
  xlab("DESeq2 adjp: Visit explicitly in model") +
  ylab("DESeq2 adjp: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (spearman)"))
pp(file = "images/compare_cf_and_visit_in_model_monocyte_adjp.svg")
adjp_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (10862).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
adjp_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (10862).
## x Fix the following mappings: `colour`.
previous_sig_idx <- big_table[["deseq_adjp"]] <= 0.05 &
  abs(big_table[["deseq_logfc"]] >= 1.0)
summary(previous_sig_idx)
##    Mode   FALSE    TRUE 
## logical   10802      60
previous_genes <- rownames(big_table)[previous_sig_idx]

new_sig_idx <- abs(deseq_table[["log2FoldChange"]]) >= 1.0 &
  deseq_table[["padj"]] < 0.05
new_genes <- rownames(deseq_table)[new_sig_idx]
na_idx <- is.na(new_genes)
new_genes <- new_genes[!na_idx]

Vennerable::Venn(list("previous" = previous_genes, "new" = new_genes))
## A Venn object on 2 sets named
## previous,new 
## 00 10 01 11 
##  0  7 57 53
test_new <- simple_gprofiler(new_genes)
test_new
## A set of ontologies produced by gprofiler using 110
## genes against the hsapiens annotations and significance cutoff 0.05.
## There are: 
## 9 MF
## 147 BP
## 0 KEGG
## 0 REAC
## 0 WP
## 2 TF
## 0 MIRNA
## 0 HPA
## 0 CORUM
## 0 HP hits.
test_old <- simple_gprofiler(previous_genes)
test_old
## A set of ontologies produced by gprofiler using 60
## genes against the hsapiens annotations and significance cutoff 0.05.
## There are: 
## 0 MF
## 44 BP
## 3 KEGG
## 0 REAC
## 2 WP
## 0 TF
## 0 MIRNA
## 0 HPA
## 0 CORUM
## 0 HP hits.
new_annotated <- merge(fData(t_monocytes), deseq_table, by = "row.names")
rownames(new_annotated) <- new_annotated[["Row.names"]]
new_annotated[["Row.names"]] <- NULL
write_xlsx(data = new_annotated, excel = "excel/monocyte_visit_in_model_sva_cf_new.xlsx")
## write_xlsx() wrote excel/monocyte_visit_in_model_sva_cf_new.xlsx.
## The cursor is on sheet first, row: 10865 column: 23.
old_annotated <- merge(fData(t_eosinophils), big_table, by = "row.names")
rownames(old_annotated) <- old_annotated[["Row.names"]]
old_annotated[["Row.names"]] <- NULL
write_xlsx(data = old_annotated, excel = "excel/monocyte_visit_in_model_sva_cf_old.xlsx")
## write_xlsx() wrote excel/monocyte_visit_in_model_sva_cf_old.xlsx.
## The cursor is on sheet first, row: 10865 column: 101.

Are the expected Ensembl gene IDs found in this new set?

sum(new_genes %in% expected_ensg)
## [1] 10

10.2 Eosinophils

We wish to ensure that my model simplification did not do anything incorrect to the data for all three cell types, I already did this for the neutrophils, let us repeat for the eosinophils. I am therefore (mostly) copy/pasting the neutrophil section here.

## The original pairwise invocation with sva:
#t_cf_eosinophil_de_sva <- all_pairwise(t_eosinophils, model_batch = "svaseq",
#                                       filter = TRUE, parallel=FALSE, methods = methods)
test_eosinophils <- normalize_expt(t_eosinophils, filter = "simple")
## Removing 2652 low-count genes (17300 remaining).
test_eo_design <- pData(test_eosinophils)
test_formula <- as.formula("~ 0 + finaloutcome + visitnumber")
test_model <- model.matrix(test_formula, data = test_eo_design)
null_formula <- as.formula("~ 0 + visitnumber")
null_model <- model.matrix(null_formula, data = test_eo_design)

linear_mtrx <- exprs(test_eosinophils)
l2_mtrx <- log2(linear_mtrx + 1)
chosen_surrogates <- sva::num.sv(dat = l2_mtrx, mod = test_model)
chosen_surrogates
## [1] 3
surrogate_result <- sva::svaseq(
  dat = linear_mtrx, n.sv = chosen_surrogates, mod = test_model, mod0 = null_model)
## Number of significant surrogate variables is:  3 
## Iteration (out of 5 ):1  2  3  4  5
model_adjust <- as.matrix(surrogate_result[["sv"]])

colnames(model_adjust) <- c("SV1", "SV2", "SV3")
rownames(model_adjust) <- rownames(pData(test_eosinophils))
longer_model <- as.formula("~ finaloutcome + visitnumber + SV1 + SV2 + SV3")
eo_design_svs <- cbind(test_eo_design, model_adjust)
summarized <- DESeq2::DESeqDataSetFromMatrix(countData = linear_mtrx,
                                             colData = eo_design_svs,
                                             design = longer_model)
## converting counts to integer mode
deseq_run <- DESeq2::DESeq(summarized)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
deseq_table <- as.data.frame(DESeq2::results(object = deseq_run,
                                             contrast = c("finaloutcome", "failure", "cure"),
                                             format = "DataFrame"))

big_table <- t_cf_eosinophil_table_sva[["data"]][["outcome"]]
only_deseq <- big_table[, c("deseq_logfc", "deseq_adjp")]
merged <- merge(deseq_table, only_deseq, by = "row.names")
rownames(merged) <- merged[["Row.names"]]
merged[["Row.names"]] <- NULL

cor_value <- cor.test(merged[["log2FoldChange"]], merged[["deseq_logfc"]])
cor_value
## 
##  Pearson's product-moment correlation
## 
## data:  merged[["log2FoldChange"]] and merged[["deseq_logfc"]]
## t = 228, df = 10530, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9084 0.9149
## sample estimates:
##    cor 
## 0.9117
logfc_plotter <- plot_linear_scatter(merged[, c("log2FoldChange", "deseq_logfc")])
logfc_plot <- logfc_plotter[["scatter"]] +
  xlab("DESeq2 log2FC: Visit explicitly in model") +
  ylab("DESeq2 log2FC: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (pearson)"))
pp(file = "figures/compare_cf_and_visit_in_model_eosinophil_logfc.svg")
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (10532).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (10532).
## x Fix the following mappings: `colour`.
cor_value <- cor.test(merged[["padj"]], merged[["deseq_adjp"]], method = "spearman")
## Warning in cor.test.default(merged[["padj"]], merged[["deseq_adjp"]], method =
## "spearman"): Cannot compute exact p-value with ties
cor_value
## 
##  Spearman's rank correlation rho
## 
## data:  merged[["padj"]] and merged[["deseq_adjp"]]
## S = 3.5e+10, p-value <2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##    rho 
## 0.8214
adjp_plotter <- plot_linear_scatter(merged[, c("padj", "deseq_adjp")])
adjp_plot <- adjp_plotter[["scatter"]] +
  xlab("DESeq2 adjp: Visit explicitly in model") +
  ylab("DESeq2 adjp: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (spearman)"))
pp(file = "images/compare_cf_and_visit_in_model_eosinophil_adjp.svg")
adjp_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (10532).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
adjp_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (10532).
## x Fix the following mappings: `colour`.
previous_sig_idx <- big_table[["deseq_adjp"]] <= 0.05 &
  abs(big_table[["deseq_logfc"]] >= 1.0)
summary(previous_sig_idx)
##    Mode   FALSE    TRUE 
## logical   10416     116
previous_genes <- rownames(big_table)[previous_sig_idx]

new_sig_idx <- abs(deseq_table[["log2FoldChange"]]) >= 1.0 &
  deseq_table[["padj"]] < 0.05
new_genes <- rownames(deseq_table)[new_sig_idx]
na_idx <- is.na(new_genes)
new_genes <- new_genes[!na_idx]

Vennerable::Venn(list("previous" = previous_genes, "new" = new_genes))
## A Venn object on 2 sets named
## previous,new 
##  00  10  01  11 
##   0  38 193  78
test_new <- simple_gprofiler(new_genes)
test_new
## A set of ontologies produced by gprofiler using 271
## genes against the hsapiens annotations and significance cutoff 0.05.
## There are: 
## 11 MF
## 186 BP
## 4 KEGG
## 6 REAC
## 5 WP
## 7 TF
## 0 MIRNA
## 1 HPA
## 0 CORUM
## 0 HP hits.
test_old <- simple_gprofiler(previous_genes)
test_old
## A set of ontologies produced by gprofiler using 116
## genes against the hsapiens annotations and significance cutoff 0.05.
## There are: 
## 26 MF
## 112 BP
## 3 KEGG
## 7 REAC
## 4 WP
## 72 TF
## 1 MIRNA
## 0 HPA
## 0 CORUM
## 0 HP hits.
new_annotated <- merge(fData(t_eosinophils), deseq_table, by = "row.names")
rownames(new_annotated) <- new_annotated[["Row.names"]]
new_annotated[["Row.names"]] <- NULL
write_xlsx(data = new_annotated, excel = "excel/eosinophil_visit_in_model_sva_cf_new.xlsx")
## write_xlsx() wrote excel/eosinophil_visit_in_model_sva_cf_new.xlsx.
## The cursor is on sheet first, row: 17303 column: 23.
old_annotated <- merge(fData(t_eosinophils), big_table, by = "row.names")
rownames(old_annotated) <- old_annotated[["Row.names"]]
old_annotated[["Row.names"]] <- NULL
write_xlsx(data = old_annotated, excel = "excel/eosinophil_visit_in_model_sva_cf_old.xlsx")
## write_xlsx() wrote excel/eosinophil_visit_in_model_sva_cf_old.xlsx.
## The cursor is on sheet first, row: 10535 column: 101.

Check our genes of particular interest

sum(new_genes %in% expected_ensg)
## [1] 5

Not quite as similar as the monocyte data.

10.3 Neutrophils

## The original pairwise invocation with sva:
## t_cf_neutrophil_de_sva <- all_pairwise(t_neutrophils, model_batch = "svaseq",
##                                        parallel = parallel, filter = TRUE,
##                                        methods = methods)
test_neutrophils <- normalize_expt(t_neutrophils, filter = "simple")
## Removing 2652 low-count genes (17300 remaining).
test_neut_design <- pData(test_neutrophils)
test_formula <- as.formula("~ 0 + finaloutcome + visitnumber")
test_model <- model.matrix(test_formula, data = test_neut_design)
## Note to self: double-check that the following line is correct.
null_formula <- as.formula("~ 0 + visitnumber")
## null_model <- test_model[, c(1, 2)]
null_model <- model.matrix(null_formula, data = test_neut_design)

linear_mtrx <- exprs(test_neutrophils)
l2_mtrx <- log2(linear_mtrx + 1)
chosen_surrogates <- sva::num.sv(dat = l2_mtrx, mod = test_model)
chosen_surrogates
## [1] 4
surrogate_result <- sva::svaseq(
  dat = linear_mtrx, n.sv = chosen_surrogates, mod = test_model, mod0 = null_model)
## Number of significant surrogate variables is:  4 
## Iteration (out of 5 ):1  2  3  4  5
model_adjust <- as.matrix(surrogate_result[["sv"]])

## I don't think the following is actually required, but it is weird to just have this
## unnamed matrix hangingout.
## Set the columns to the SV#s
colnames(model_adjust) <- c("SV1", "SV2", "SV3", "SV4")
## Set the rows the sample IDs
rownames(model_adjust) <- rownames(pData(test_neutrophils))

longer_model <- as.formula("~ finaloutcome + visitnumber + SV1 + SV2 + SV3 + SV4")
neut_design_svs <- cbind(test_neut_design, model_adjust)
summarized <- DESeq2::DESeqDataSetFromMatrix(countData = linear_mtrx,
                                             colData = neut_design_svs,
                                             design = longer_model)
## converting counts to integer mode
deseq_run <- DESeq2::DESeq(summarized)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
deseq_table <- as.data.frame(DESeq2::results(object = deseq_run,
                                             contrast = c("finaloutcome", "failure", "cure"),
                                             format = "DataFrame"))

## We should be able to directly compare this to the the deseq columns from the above
## data structure named: t_cf_neutrophil_table_sva

big_table <- t_cf_neutrophil_table_sva[["data"]][["outcome"]]
only_deseq <- big_table[, c("deseq_logfc", "deseq_adjp")]
merged <- merge(deseq_table, only_deseq, by = "row.names")
rownames(merged) <- merged[["Row.names"]]
merged[["Row.names"]] <- NULL

cor_value <- cor.test(merged[["log2FoldChange"]], merged[["deseq_logfc"]])
cor_value
## 
##  Pearson's product-moment correlation
## 
## data:  merged[["log2FoldChange"]] and merged[["deseq_logfc"]]
## t = 393, df = 9099, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9706 0.9729
## sample estimates:
##    cor 
## 0.9718
logfc_plotter <- plot_linear_scatter(merged[, c("log2FoldChange", "deseq_logfc")])
logfc_plot <- logfc_plotter[["scatter"]] +
  xlab("DESeq2 log2FC: Visit explicitly in model") +
  ylab("DESeq2 log2FC: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (pearson)"))
pp(file = "figures/compare_cf_and_visit_in_model_neutrophil_logfc.svg")
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
cor_value <- cor.test(merged[["padj"]], merged[["deseq_adjp"]], method = "spearman")
## Warning in cor.test.default(merged[["padj"]], merged[["deseq_adjp"]], method =
## "spearman"): Cannot compute exact p-value with ties
cor_value
## 
##  Spearman's rank correlation rho
## 
## data:  merged[["padj"]] and merged[["deseq_adjp"]]
## S = 1e+10, p-value <2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##    rho 
## 0.9202
adjp_plotter <- plot_linear_scatter(merged[, c("padj", "deseq_adjp")])
adjp_plot <- adjp_plotter[["scatter"]] +
  xlab("DESeq2 adjp: Visit explicitly in model") +
  ylab("DESeq2 adjp: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (spearman)"))
pp(file = "images/compare_cf_and_visit_in_model_neutrophil_adjp.svg")
adjp_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
adjp_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
previous_sig_idx <- big_table[["deseq_adjp"]] <= 0.05 &
  abs(big_table[["deseq_logfc"]] >= 1.0)
summary(previous_sig_idx)
##    Mode   FALSE    TRUE 
## logical    8971     130
previous_genes <- rownames(big_table)[previous_sig_idx]

new_sig_idx <- abs(deseq_table[["log2FoldChange"]]) >= 1.0 &
  deseq_table[["padj"]] < 0.05
new_genes <- rownames(deseq_table)[new_sig_idx]
na_idx <- is.na(new_genes)
new_genes <- new_genes[!na_idx]

Vennerable::Venn(list("previous" = previous_genes, "new" = new_genes))
## A Venn object on 2 sets named
## previous,new 
## 00 10 01 11 
##  0 51 92 79
test_new <- simple_gprofiler(new_genes)
test_new
## A set of ontologies produced by gprofiler using 171
## genes against the hsapiens annotations and significance cutoff 0.05.
## There are: 
## 1 MF
## 12 BP
## 0 KEGG
## 2 REAC
## 0 WP
## 3 TF
## 2 MIRNA
## 0 HPA
## 0 CORUM
## 0 HP hits.
test_old <- simple_gprofiler(previous_genes)
test_old
## A set of ontologies produced by gprofiler using 130
## genes against the hsapiens annotations and significance cutoff 0.05.
## There are: 
## 4 MF
## 67 BP
## 0 KEGG
## 5 REAC
## 2 WP
## 57 TF
## 0 MIRNA
## 0 HPA
## 0 CORUM
## 0 HP hits.
new_annotated <- merge(fData(t_neutrophils), deseq_table, by = "row.names")
rownames(new_annotated) <- new_annotated[["Row.names"]]
new_annotated[["Row.names"]] <- NULL
write_xlsx(data = new_annotated, excel = "excel/neutrophil_visit_in_model_sva_cf_new.xlsx")
## write_xlsx() wrote excel/neutrophil_visit_in_model_sva_cf_new.xlsx.
## The cursor is on sheet first, row: 17303 column: 23.
old_annotated <- merge(fData(t_neutrophils), big_table, by = "row.names")
rownames(old_annotated) <- old_annotated[["Row.names"]]
old_annotated[["Row.names"]] <- NULL
write_xlsx(data = old_annotated, excel = "excel/neutrophil_visit_in_model_sva_cf_old.xlsx")
## write_xlsx() wrote excel/neutrophil_visit_in_model_sva_cf_old.xlsx.
## The cursor is on sheet first, row: 9104 column: 101.

Once again, see how many of our favorite genes are here

sum(new_genes %in% expected_ensg)
## [1] 8

11 Mixed linear models

When the above work was reviewed for publication, one concern raised arose because we are not considering the variance of each person in the contrasts above and are potentially over-representing the significance/power of the results because the models we are using do not include the donor. My previous understanding was that it is sufficient to include visit in the model because that would result in a model matrix which separates samples from each person; but I am now reasonably certain this is incorrect.

Therefore, the previous couple of blocks I now think are not approaching this problem correctly. We spent some time talking with Neal and discussing the various models and methods we employed. He made a series of suggestions about ways which might prove more correct. It seems that a mixed linear model is the most appropriate method for this type of query. I think I can perform that with limma, via voom. Let us try and see what happens. After doing some reading, I think the most appropriate way to perform this is to use dream() from varianceParition, which is cool because I really like it.

As I write this, we are reasonably certain that a mixed linear model provides a statistically correct framework for representing our expression data as a function of finaloutcome, visit, and person, e.g:

exprs ~ finaloutcome + visit + (1|donor)

In our discussions surrounding the various ways to compare/contrast the various results with/out the mixed linear model; there were a few primary goals laid out by Maria Adelaida and Neal. The goal is to observe if/how well our previous analyses agree with results obtained using a mixed linear model. There are a couple of caveats:

  1. The mlm is not available for data in a negative binomial distribution. Ergo, DESeq2/EdgeR are out a priori. This is a little sad because we have generally relied upon DESeq2 results. However, I do routinely compare DESeq2 to voom->limma and am usually impressed at the degree of similarity.
  2. mlm analyses are significantly more computationally expensive. When I have played with them via variancePartition in the past I have run my very nice machine OoM on more than a few occasions. This is important, because I want to have everything in my container, but I cannot expect any else’s computer to have > 200G RAM. I can definitely lower the parallel processing requirements to save memory, but then these will take forever (well, probably a couple days to a week).

So, with that in mind, Maria Adelaida, Najib, and Neal focused on repeating a useful subset of the analyses using the mlm and comparing them to our extant results rather than re-implementing everything. The following are the things they suggested are the most important comparison points:

  1. Repeat this process, clean it up for: monocytes/neutrophils
  2. Compare the results when using models which are (note that this way of writing fixes the slope of each donor’s model but allows the intercept to change):
    1. ~ finaloutcome + visitnumber + (1|donor)
    2. ~ finaloutcome + visitnumber
    3. ~ finaloutcome + (1|donor)
  3. Compare the results from limma for a,b,c (really, they asked me to only focus on a,b; I wanted to compare c as well)
  4. Extract the set of ‘significant’ genes via logFC/pvalue for all of the above and see the shared/unique genes.

I have already written a skeleton function ‘dream_pairwise()’ as a sibling to my other *_pairwise() functions. I think that with some minor modifications (or maybe none at all, when I wrote it I was thinking about fun models that variancePartition supports) it can accept the mixed linear model of interest.

11.1 Using a mixed linear model with dream

In the following block, the mixed formula will get passed to dream. I set the code to use the first element (after the intercept) as the ‘condition’ factor. Thus if I had made the model ‘~ 0 + visitnumber + finaloutcome + (1|donor)’, it would compare visits.

The dream_pairwise() function is responsible for making sure the variancePartition replacement functions are used for things like voom, lmfit, ebayes, and toptable. Strangely, some of them will automatically fall back to limma’s functions if there is no random-effect in the model, but others will not. As a result, I have a check and invoke the appropriate functions explicitly in dream_pairwise().

mixed_fstring <- "~ 0 + finaloutcome + visitnumber + (1|donor)"
mixed_form <- as.formula(mixed_fstring)
get_formula_factors(mixed_form)
## Getting factors from: ~0 + finaloutcome + visitnumber + (1 | donor).
## $type
## [1] "cellmeans"
## 
## $interaction
## [1] FALSE
## 
## $mixed
## [1] TRUE
## 
## $mixers
## [1] "1"     "donor"
## 
## $cellmeans_intercept
## [1] "0"
## 
## $factors
## [1] "finaloutcome" "visitnumber"  "donor"
t_eosinophil_mixed <- set_expt_conditions(t_eosinophils, fact = "finaloutcome")
## The numbers of samples by condition are:
## 
##    cure failure 
##      17       9
mixed_eosinophil_de <- dream_pairwise(t_eosinophil_mixed, alt_model = mixed_form)
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$libsize.
## Dream/limma step 1/6: choosing model.
## Error in 1 | donor: operations are possible only for numeric, logical or complex types
mixed_eosinophil_de_xlsx <- write_de_table(mixed_eosinophil_de, type = "limma",
                                           excel = glue("excel/mixed_eosinophil_table-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 'mixed_eosinophil_de' not found
t_monocyte_mixed <- set_expt_conditions(t_monocytes, fact = "finaloutcome")
## The numbers of samples by condition are:
## 
##    cure failure 
##      21      21
mixed_monocyte_de <- dream_pairwise(t_monocyte_mixed, alt_model = mixed_form)
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$best_libsize.
## Dream/limma step 1/6: choosing model.
## Error in 1 | donor: operations are possible only for numeric, logical or complex types
mixed_monocyte_de_xlsx <- write_de_table(mixed_monocyte_de, type = "limma",
                                         excel = glue("excel/mixed_monocyte_table-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 'mixed_monocyte_de' not found
t_neutrophil_mixed <- set_expt_conditions(t_neutrophils, fact = "finaloutcome")
## The numbers of samples by condition are:
## 
##    cure failure 
##      20      21
mixed_neutrophil_de <- dream_pairwise(t_neutrophil_mixed, alt_model = mixed_form)
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$libsize.
## Dream/limma step 1/6: choosing model.
## Error in 1 | donor: operations are possible only for numeric, logical or complex types
mixed_neutrophil_de_xlsx <- write_de_table(mixed_neutrophil_de, type = "limma",
                                           excel = glue("excel/mixed_neutrophil_table-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 'mixed_neutrophil_de' not found

11.2 Using the same method without the mixed model

In other words, the following invocations will go much faster and likely be nearly (or completely) identical to the results from limma using the same model since the ‘mixed_fstring_fv’ does not have a random effect.

mixed_fstring_fv <- "~ 0 + finaloutcome + visitnumber"
mixed_form_fv <- as.formula(mixed_fstring_fv)
get_formula_factors(mixed_form_fv)
## Getting factors from: ~0 + finaloutcome + visitnumber.
## $type
## [1] "cellmeans"
## 
## $interaction
## [1] FALSE
## 
## $mixed
## [1] FALSE
## 
## $cellmeans_intercept
## [1] "0"
## 
## $factors
## [1] "finaloutcome" "visitnumber"
mixed_eosinophil_fv_de <- dream_pairwise(t_eosinophil_mixed, alt_model = mixed_form_fv)
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$libsize.
## Dream/limma step 1/6: choosing model.
## Dream/limma 2/6: Attempting voomWithDreamWeights.
## Getting factors from: ~0 + finaloutcome + visitnumber.
## Dream/limma step 3/6: running dream.
## The provided conditions are:
## conditions
##    cure failure 
##      17       9
## Choosing among model matrix columns: finaloutcomecure, finaloutcomefailure.
## Warning in createContrastL(objFlt$formula, objFlt$data, L): Contrasts with only
## a single non-zero term are already evaluated by default.
## Dream/limma step 5/6: Running eBayes.
## Dream/limma step 6/6: Writing limma outputs.
## Limma step 6/6: 1/5: Creating table: failure_vs_cure.  Adjust = BH
## Limma step 6/6: 2/5: Creating table: finaloutcomecure.  Adjust = BH
## Limma step 6/6: 3/5: Creating table: finaloutcomefailure.  Adjust = BH
## Limma step 6/6: 4/5: Creating table: visitnumber2.  Adjust = BH
## Limma step 6/6: 5/5: Creating table: visitnumber1.  Adjust = BH
## Limma step 6/6: 1/6: Creating table: cure.  Adjust = BH
## Limma step 6/6: 2/6: Creating table: failure.  Adjust = BH
## Limma step 6/6: 3/6: Creating table: finaloutcomecure.  Adjust = BH
## Limma step 6/6: 4/6: Creating table: finaloutcomefailure.  Adjust = BH
## Limma step 6/6: 5/6: Creating table: visitnumber2.  Adjust = BH
## Limma step 6/6: 6/6: Creating table: visitnumber1.  Adjust = BH

mixed_eosinophil_de_nodonor_xlsx <- write_de_table(mixed_eosinophil_fv_de, type = "limma",
                                                   excel = glue("excel/mixed_eosinophil_nodonor_table-v{ver}.xlsx"))

mixed_monocyte_fv_de <- dream_pairwise(t_monocyte_mixed, alt_model = mixed_form_fv)
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$best_libsize.
## Dream/limma step 1/6: choosing model.
## Dream/limma 2/6: Attempting voomWithDreamWeights.
## Getting factors from: ~0 + finaloutcome + visitnumber.
## Dream/limma step 3/6: running dream.
## The provided conditions are:
## conditions
##    cure failure 
##      21      21
## Choosing among model matrix columns: finaloutcomecure, finaloutcomefailure.
## Warning in createContrastL(objFlt$formula, objFlt$data, L): Contrasts with only
## a single non-zero term are already evaluated by default.
## Dream/limma step 5/6: Running eBayes.
## Dream/limma step 6/6: Writing limma outputs.
## Limma step 6/6: 1/5: Creating table: failure_vs_cure.  Adjust = BH
## Limma step 6/6: 2/5: Creating table: finaloutcomecure.  Adjust = BH
## Limma step 6/6: 3/5: Creating table: finaloutcomefailure.  Adjust = BH
## Limma step 6/6: 4/5: Creating table: visitnumber2.  Adjust = BH
## Limma step 6/6: 5/5: Creating table: visitnumber1.  Adjust = BH
## Limma step 6/6: 1/6: Creating table: cure.  Adjust = BH
## Limma step 6/6: 2/6: Creating table: failure.  Adjust = BH
## Limma step 6/6: 3/6: Creating table: finaloutcomecure.  Adjust = BH
## Limma step 6/6: 4/6: Creating table: finaloutcomefailure.  Adjust = BH
## Limma step 6/6: 5/6: Creating table: visitnumber2.  Adjust = BH
## Limma step 6/6: 6/6: Creating table: visitnumber1.  Adjust = BH

mixed_monocyte_de_nodonor_xlsx <- write_de_table(mixed_monocyte_fv_de, type = "limma",
                                                 excel = glue("excel/mixed_monocyte_nodonor_table-v{ver}.xlsx"))

mixed_neutrophil_fv_de <- dream_pairwise(t_neutrophil_mixed, alt_model = mixed_form_fv)
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$libsize.
## Dream/limma step 1/6: choosing model.
## Dream/limma 2/6: Attempting voomWithDreamWeights.
## Getting factors from: ~0 + finaloutcome + visitnumber.
## Dream/limma step 3/6: running dream.
## The provided conditions are:
## conditions
##    cure failure 
##      20      21
## Choosing among model matrix columns: finaloutcomecure, finaloutcomefailure.
## Warning in createContrastL(objFlt$formula, objFlt$data, L): Contrasts with only
## a single non-zero term are already evaluated by default.
## Dream/limma step 5/6: Running eBayes.
## Dream/limma step 6/6: Writing limma outputs.
## Limma step 6/6: 1/5: Creating table: failure_vs_cure.  Adjust = BH
## Limma step 6/6: 2/5: Creating table: finaloutcomecure.  Adjust = BH
## Limma step 6/6: 3/5: Creating table: finaloutcomefailure.  Adjust = BH
## Limma step 6/6: 4/5: Creating table: visitnumber2.  Adjust = BH
## Limma step 6/6: 5/5: Creating table: visitnumber1.  Adjust = BH
## Limma step 6/6: 1/6: Creating table: cure.  Adjust = BH
## Limma step 6/6: 2/6: Creating table: failure.  Adjust = BH
## Limma step 6/6: 3/6: Creating table: finaloutcomecure.  Adjust = BH
## Limma step 6/6: 4/6: Creating table: finaloutcomefailure.  Adjust = BH
## Limma step 6/6: 5/6: Creating table: visitnumber2.  Adjust = BH
## Limma step 6/6: 6/6: Creating table: visitnumber1.  Adjust = BH

mixed_neutrophil_de_nodonor_xlsx <- write_de_table(mixed_neutrophil_fv_de, type = "limma",
                                                   excel = glue("excel/mixed_neutrophil_nodonor_table-v{ver}.xlsx"))

11.3 Comparing the results

There are a couple observations here which are important and/or troubling:

  1. Using the mlm results in no genes with a significant FDR adjusted p-value. This supports the hypothesis that we over-represented the significance of the data in our original analysis I think in a pretty compelling fashion.
  2. However, there is this interesting note from the dream documentation: “Since dream uses an estimated degrees of freedom value for each hypothesis test, the degrees of freedom is different for each gene here. Therefore, the t-statistics are not directly comparable since they have different degrees of freedom. In order to be able to compare test statistics, we report z.std which is the p-value transformed into a signed z-score. This can be used for downstream analysis.”
  3. I spent some time reading the R markdown documents at https://github.com/GabrielHoffman/dream_analysis.git which accompany the paper ((hoffmanDreamPowerfulDifferential2021?)) and found that there is only one instance in which they make use of adjusted p-values; at the very end of the iPSC data. In addition they only use the zstd metric when pulling gene sets for comparing against GO categories. In all other instances, the metric used for significance is the ‘raw’ p-value.

11.3.1 A little function to print overlaps

Najib asked if I would compare the set of overlapping genes observed with the various significance metrics provided. I think I should write a little function to do this because there are ample opportunities for typeos.

deseq_df <- t_cf_monocyte_table_sva[["data"]][["outcome"]]
deseq_gene_idx <- abs(deseq_df[["deseq_logfc"]]) >= 1.0 &
  deseq_df[["deseq_adjp"]] <= 0.05
deseq_symb <- annot[deseq_gene_idx, "hgnc_symbol"]
deseq_symb
##   [1] "SYN1"            "TENM1"           "LTF"             "PHLDB1"         
##   [5] "SLAMF7"          "SCML1"           "BCAR1"           "TRIP13"         
##   [9] "SLC12A1"         "ADAMTS2"         "GP6"             "SIGLEC1"        
##  [13] "SIRPG"           "CHKB"            "IL2RB"           "CTSG"           
##  [17] "PLEK2"           "NTSR1"           "MSLN"            "FZD3"           
##  [21] "TULP2"           "HAS1"            "GSDME"           "PRUNE2"         
##  [25] "PALD1"           "UNC5B"           "CCL8"            "FOLR1"          
##  [29] "RAD51AP1"        "PRLR"            "OTOF"            "IL1R2"          
##  [33] "IL1R1"           "CD274"           "PRB2"            "MAPK8IP1"       
##  [37] "CXCR4"           "IL1B"            "LAMP5"           "MTUS1"          
##  [41] "IDO1"            "TMTC1"           "RSAD2"           "HRK"            
##  [45] "IL6"             "THBS1"           "IFI44L"          "ADAMTS10"       
##  [49] "GPR174"          "LCN2"            "TENM4"           "CD8A"           
##  [53] "PGM5"            "TBC1D24"         "TRIM58"          "HESX1"          
##  [57] "CAMP"            "SAP30"           "CFAP47"          "AQP3"           
##  [61] "HECTD2"          "IFI27"           "C15orf48"        "LAIR2"          
##  [65] "ANGPTL4"         "RAB3IL1"         "DDIT4"           "KIF5C"          
##  [69] "COL3A1"          "RNF150"          "HTRA3"           "S1PR1"          
##  [73] "LGALS4"          "OLR1"            "JUP"             "HOXB2"          
##  [77] "SH3PXD2B"        "FBXW8"           "FBXO39"          "HLA-DQB1"       
##  [81] "OR6C2"           "CSMD1"           "EFHC2"           "OLFML1"         
##  [85] "USP18"           "RGPD2"           "PRR5"            "RHCE"           
##  [89] "AKR1C3"          "AFAP1"           "MMP1"            "HLA-DQA1"       
##  [93] "SCAMP5"          "SUCNR1"          "OOEP"            "GLYATL3"        
##  [97] "HLA-DMA"         "C9orf129"        "NT5M"            "POU5F1B"        
## [101] "SMTNL1"          "HLA-DQB2"        "DEFA3"           "UPK3B"          
## [105] "PRR5-ARHGAP8"    "TRNP1"           "MGAM"            "RNASE4"         
## [109] "MRC1"            "LINC02210-CRHR1" "FCGBP"           "CCL3"
deseq_genes <- rownames(annot)[deseq_gene_idx]

overlap_sig <- function(mixed, deseq = deseq_genes, mixed_pcol = "P.Value",
                        annot = fData(t_monocytes), mixed_cutoff = 0.05, direction = "lt",
                        expected = expected_genes) {
  if (direction == "lt") {
    mixed_sig_idx <- abs(mixed[["logFC"]]) >= 1.0 &
      mixed[[mixed_pcol]] <= mixed_cutoff
  } else {
    mixed_sig_idx <- abs(mixed[["logFC"]]) >= 1.0 &
      mixed[[mixed_pcol]] >= mixed_cutoff
  }
  mixed_genes <- rownames(mixed)[mixed_sig_idx]
  venn_lst <- list(
    "mixed_model" = mixed_genes,
    "DESeq_sva" = deseq)
  mixed_deseq_comp <- Vennerable::Venn(venn_lst)
  Vennerable::plot(mixed_deseq_comp)
  mixed_ensg <- mixed_deseq_comp@IntersectionSets[["11"]]
  overlap_genes <- annot[mixed_ensg, "hgnc_symbol"]
  message("The set of all overlapping genes:")
  print(overlap_genes)
  found_idx <- expected %in% overlap_genes
  message("Overlapping genes in the 10 favorites:")
  print(expected[found_idx])
}

11.3.2 Monocytes

In this block I am looking at the similarities between the mixed model with donor and without donor (which is no longer a mixed model; it is just using the dream functions (which I am pretty sure just fall back to limma when there is not a random effect)).

monocyte_visit_with_donor <- mixed_monocyte_de$all_tables$contrasts[[1]]
## Error in eval(expr, envir, enclos): object 'mixed_monocyte_de' not found
monocyte_visit_without_donor <- mixed_monocyte_fv_de$all_tables$contrasts[[1]]
donor_aucc <- calculate_aucc(monocyte_visit_with_donor, monocyte_visit_without_donor,
                             px = "adj.P.Val", py = "adj.P.Val",
                             lx = "logFC", ly = "logFC")
## Error in eval(expr, envir, enclos): object 'monocyte_visit_with_donor' not found
donor_aucc
## Error in eval(expr, envir, enclos): object 'donor_aucc' not found
with_donor_genes <- abs(monocyte_visit_with_donor[["logFC"]]) >= 1.0 &
  monocyte_visit_with_donor[["P.Value"]] <= 0.05
## Error in eval(expr, envir, enclos): object 'monocyte_visit_with_donor' not found
without_donor_genes <- abs(monocyte_visit_without_donor[["logFC"]]) >= 1.0 &
  monocyte_visit_with_donor[["P.Value"]] <= 0.05
## Error in abs(monocyte_visit_without_donor[["logFC"]]): non-numeric argument to mathematical function
donor_genes <- rownames(monocyte_visit_with_donor)[with_donor_genes]
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'monocyte_visit_with_donor' not found
donor_z_idx <- abs(monocyte_visit_with_donor[["logFC"]]) >= 1.0 &
  monocyte_visit_with_donor[["z.std"]] >= 1.0
## Error in eval(expr, envir, enclos): object 'monocyte_visit_with_donor' not found
donor_z_genes <- rownames(monocyte_visit_with_donor)[donor_z_idx]
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'monocyte_visit_with_donor' not found
overlap_sig(monocyte_visit_with_donor)
## Error in eval(expr, envir, enclos): object 'monocyte_visit_with_donor' not found
overlap_sig(monocyte_visit_with_donor,
            mixed_pcol = "z.std", direction = "gt", mixed_cutoff = 1.5)
## Error in eval(expr, envir, enclos): object 'monocyte_visit_with_donor' not found

I would have sworn that the 2.0 z-score set was much larger than the p-value set and included all of the 10 genes. Apparently I was very wrong.

11.3.3 Neutrophils

Now examine the various models for the neutrophil samples.

neutrophil_visit_with_donor <- mixed_neutrophil_de$all_tables$contrasts[[1]]
## Error in eval(expr, envir, enclos): object 'mixed_neutrophil_de' not found
neutrophil_visit_without_donor <- mixed_neutrophil_fv_de$all_tables$contrasts[[1]]
donor_aucc <- calculate_aucc(neutrophil_visit_with_donor, neutrophil_visit_without_donor,
                             px = "adj.P.Val", py = "adj.P.Val",
                             lx = "logFC", ly = "logFC")
## Error in eval(expr, envir, enclos): object 'neutrophil_visit_with_donor' not found
donor_aucc
## Error in eval(expr, envir, enclos): object 'donor_aucc' not found
with_donor_genes <- abs(neutrophil_visit_with_donor[["logFC"]]) >= 1.0 &
  neutrophil_visit_with_donor[["P.Value"]] <= 0.05
## Error in eval(expr, envir, enclos): object 'neutrophil_visit_with_donor' not found
without_donor_genes <- abs(neutrophil_visit_without_donor[["logFC"]]) >= 1.0 &
  neutrophil_visit_with_donor[["P.Value"]] <= 0.05
## Error in abs(neutrophil_visit_without_donor[["logFC"]]): non-numeric argument to mathematical function
donor_genes <- rownames(neutrophil_visit_with_donor)[with_donor_genes]
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'neutrophil_visit_with_donor' not found
visit_genes <- rownames(neutrophil_visit_with_donor)[without_donor_genes]
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'neutrophil_visit_with_donor' not found
venn_lst <- list(
  "with_donor" = donor_genes,
  "with_visit" = visit_genes)
## Error in eval(expr, envir, enclos): object 'donor_genes' not found
Vennerable::Venn(venn_lst)
## Error in eval(expr, envir, enclos): object 'venn_lst' not found
overlap_sig(neutrophil_visit_with_donor)
## Error in eval(expr, envir, enclos): object 'neutrophil_visit_with_donor' not found
overlap_sig(neutrophil_visit_with_donor,
            mixed_pcol = "z.std", direction = "gt", mixed_cutoff = 1.5)
## Error in eval(expr, envir, enclos): object 'neutrophil_visit_with_donor' not found

11.3.4 Eosinophils

Finally, compare for the eosinophil samples.

eosinophil_visit_with_donor <- mixed_eosinophil_de$all_tables$contrasts[[1]]
## Error in eval(expr, envir, enclos): object 'mixed_eosinophil_de' not found
eosinophil_visit_without_donor <- mixed_eosinophil_fv_de$all_tables$contrasts[[1]]
donor_aucc <- calculate_aucc(eosinophil_visit_with_donor, eosinophil_visit_without_donor,
                             px = "adj.P.Val", py = "adj.P.Val",
                             lx = "logFC", ly = "logFC")
## Error in eval(expr, envir, enclos): object 'eosinophil_visit_with_donor' not found
donor_aucc
## Error in eval(expr, envir, enclos): object 'donor_aucc' not found
with_donor_genes <- abs(eosinophil_visit_with_donor[["logFC"]]) >= 1.0 &
  eosinophil_visit_with_donor[["P.Value"]] <= 0.05
## Error in eval(expr, envir, enclos): object 'eosinophil_visit_with_donor' not found
without_donor_genes <- abs(eosinophil_visit_without_donor[["logFC"]]) >= 1.0 &
  eosinophil_visit_with_donor[["P.Value"]] <= 0.05
## Error in abs(eosinophil_visit_without_donor[["logFC"]]): non-numeric argument to mathematical function
donor_genes <- rownames(eosinophil_visit_with_donor)[with_donor_genes]
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'eosinophil_visit_with_donor' not found
visit_genes <- rownames(eosinophil_visit_with_donor)[without_donor_genes]
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'eosinophil_visit_with_donor' not found
venn_lst <- list(
  "with_donor" = donor_genes,
  "with_visit" = visit_genes)
## Error in eval(expr, envir, enclos): object 'donor_genes' not found
Vennerable::Venn(venn_lst)
## Error in eval(expr, envir, enclos): object 'venn_lst' not found
overlap_sig(eosinophil_visit_with_donor)
## Error in eval(expr, envir, enclos): object 'eosinophil_visit_with_donor' not found
overlap_sig(eosinophil_visit_with_donor,
            mixed_pcol = "z.std", direction = "gt", mixed_cutoff = 1.5)
## Error in eval(expr, envir, enclos): object 'eosinophil_visit_with_donor' not found

Compare back to deseq with SVA and with SVA+visit and see how they look with respect to the dream invocation without the random donor effect.

deseq_aucc <- calculate_aucc(merged, monocyte_visit_without_donor,
                             px = "deseq_adjp", py = "P.Value",
                             lx = "deseq_logfc", ly = "logFC")
## Error in `[.data.frame`(tbl, x_order, c(py, ly)): undefined columns selected
deseq_aucc
## Error in eval(expr, envir, enclos): object 'deseq_aucc' not found
deseq_genes_idx <- abs(merged[["deseq_logfc"]]) >= 1.0 &
  merged[["deseq_adjp"]] <= 0.05
without_donor_genes_idx <- abs(monocyte_visit_without_donor[["logFC"]]) >= 1.0 &
  monocyte_visit_with_donor[["P.Value"]] <= 0.05
## Error in abs(monocyte_visit_without_donor[["logFC"]]): non-numeric argument to mathematical function
deseq_genes <- rownames(merged)[deseq_genes_idx]
visit_genes <- rownames(monocyte_visit_with_donor)[without_donor_genes_idx]
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'monocyte_visit_with_donor' not found
venn_lst <- list(
  "with_donor" = deseq_genes,
  "with_visit" = visit_genes)
## Error in eval(expr, envir, enclos): object 'visit_genes' not found
Vennerable::Venn(venn_lst)
## Error in eval(expr, envir, enclos): object 'venn_lst' not found

This time we are comparing back to the monocyte results which did not include the random donor effect.

deseq_aucc <- calculate_aucc(merged, monocyte_visit_without_donor,
                             px = "log2FoldChange", py = "padj",
                             lx = "adj.P.Val", ly = "logFC")
## Error in `[.data.frame`(tbl, , c(px, lx)): undefined columns selected
deseq_aucc
## Error in eval(expr, envir, enclos): object 'deseq_aucc' not found
deseq_genes_idx <- abs(merged[["log2FoldChange"]]) >= 1.0 &
  merged[["padj"]] <= 0.05
without_donor_genes_idx <- abs(monocyte_visit_without_donor[["logFC"]]) >= 1.0 &
  monocyte_visit_with_donor[["P.Value"]] <= 0.05
## Error in abs(monocyte_visit_without_donor[["logFC"]]): non-numeric argument to mathematical function
deseq_genes <- rownames(merged)[deseq_genes_idx]
visit_genes <- rownames(monocyte_visit_with_donor)[without_donor_genes_idx]
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'monocyte_visit_with_donor' not found
venn_lst <- list(
  "with_donor" = deseq_genes,
  "with_visit" = visit_genes)
## Error in eval(expr, envir, enclos): object 'visit_genes' not found
Vennerable::Venn(venn_lst)
## Error in eval(expr, envir, enclos): object 'venn_lst' not found

This is the orthologous approach: include a random effect for donor and ignore the visit effect.

mixed_fstring_fd <- "~ 0 + finaloutcome + (1|donor)"
mixed_form_fd <- as.formula(mixed_fstring_fd)
get_formula_factors(mixed_form_fd)
## Getting factors from: ~0 + finaloutcome + (1 | donor).
## $type
## [1] "cellmeans"
## 
## $interaction
## [1] FALSE
## 
## $mixed
## [1] TRUE
## 
## $mixers
## [1] "1"     "donor"
## 
## $cellmeans_intercept
## [1] "0"
## 
## $factors
## [1] "finaloutcome" "donor"
mixed_eosinophil_fd_de <- dream_pairwise(t_eosinophils, alt_model = mixed_form_fd)
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$libsize.
## Dream/limma step 1/6: choosing model.
## Error in 1 | donor: operations are possible only for numeric, logical or complex types
mixed_monocyte_fd_de <- dream_pairwise(t_monocytes, alt_model = mixed_form_fd)
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$best_libsize.
## Dream/limma step 1/6: choosing model.
## Error in 1 | donor: operations are possible only for numeric, logical or complex types
mixed_neutrophil_fd_de <- dream_pairwise(t_neutrophils, alt_model = mixed_form_fd)
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$libsize.
## Dream/limma step 1/6: choosing model.
## Error in 1 | donor: operations are possible only for numeric, logical or complex types

11.3.5 Compare monocytes

Now see how these results compare against our previous results…

monocyte_dream_result <- mixed_monocyte_de[["all_tables"]][["contrasts"]][[1]]
## Error in eval(expr, envir, enclos): object 'mixed_monocyte_de' not found
big_table <- t_cf_monocyte_table_sva[["data"]][["outcome"]]
merged <- merge(big_table, monocyte_dream_result, by = "row.names")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'y' in selecting a method for function 'merge': object 'monocyte_dream_result' not found
rownames(merged) <- merged[["Row.names"]]
merged[["Row.names"]] <- NULL
cor_value <- cor.test(merged[["logFC"]], merged[["deseq_logfc"]])
## Error in cor.test.default(merged[["logFC"]], merged[["deseq_logfc"]]): 'x' must be a numeric vector
cor_value
## 
##  Spearman's rank correlation rho
## 
## data:  merged[["padj"]] and merged[["deseq_adjp"]]
## S = 1e+10, p-value <2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##    rho 
## 0.9202
t_cf_monocyte_de_sva[["dream"]] <- mixed_monocyte_de
## Error in eval(expr, envir, enclos): object 'mixed_monocyte_de' not found
test <- combine_de_tables(
  t_cf_monocyte_de_sva, scale_p = TRUE,
  excel = "excel/test_monocyte_combined.xlsx")
test_aucc <- calculate_aucc(big_table, tbl2 = monocyte_dream_result,
                            px = "deseq_adjp", py = "adj.P.Val",
                            lx = "deseq_logfc", ly = "logFC")
## Error in eval(expr, envir, enclos): object 'monocyte_dream_result' not found
logfc_plotter <- plot_linear_scatter(merged[, c("logFC", "deseq_logfc")])
## Error in `[.data.frame`(merged, , c("logFC", "deseq_logfc")): undefined columns selected
logfc_plot <- logfc_plotter[["scatter"]] +
  xlab("Dream log2FC with (1|donor) and visit in model") +
  ylab("DESeq2 log2FC: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (pearson)
{prettyNum(logfc_plotter[['lm_rsq']])} (r-squared)"))
pp(file = "figures/compare_cf_and_visit_in_model_monocyte_logfc.svg")
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
previous_sig_idx <- merged[["deseq_adjp"]] <= 0.05 & abs(merged[["deseq_logfc"]] >= 1.0)
summary(previous_sig_idx)
##    Mode   FALSE    TRUE 
## logical    8971     130
previous_genes <- rownames(merged)[previous_sig_idx]

new_sig_idx <- abs(merged[["logFC"]]) >= 1.0 & merged[["P.Value"]] < 0.05
## Error in abs(merged[["logFC"]]): non-numeric argument to mathematical function
summary(new_sig_idx)
##    Mode   FALSE    TRUE    NA's 
## logical   16591     171     538
new_genes <- rownames(merged)[new_sig_idx]
na_idx <- is.na(new_genes)
new_genes <- new_genes[!na_idx]

annot <- fData(t_monocytes)
compare <- Vennerable::Venn(list("previous" = previous_genes, "new" = new_genes))
shared_genes <- compare@IntersectionSets[["11"]]
name_idx <- rownames(annot) %in% shared_genes
annot[name_idx, ]
##  [1] ensembl_gene_id       ensembl_transcript_id version              
##  [4] transcript_version    description           gene_biotype         
##  [7] cds_length            chromosome_name       strand               
## [10] start_position        end_position          hgnc_symbol          
## [13] uniprot_gn_symbol     transcript            mean_cds_len         
## <0 rows> (or 0-length row.names)
Vennerable::plot(compare)

11.3.6 Neutrophils

neutrophil_dream_result <- mixed_neutrophil_de[["all_tables"]][["contrasts"]][[1]]
## Error in eval(expr, envir, enclos): object 'mixed_neutrophil_de' not found
big_table <- t_cf_neutrophil_table_sva[["data"]][["outcome"]]
merged <- merge(big_table, neutrophil_dream_result, by = "row.names")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'y' in selecting a method for function 'merge': object 'neutrophil_dream_result' not found
rownames(merged) <- merged[["Row.names"]]
merged[["Row.names"]] <- NULL
cor_value <- cor.test(merged[["logFC"]], merged[["deseq_logfc"]])
## Error in cor.test.default(merged[["logFC"]], merged[["deseq_logfc"]]): 'x' must be a numeric vector
cor_value
## 
##  Spearman's rank correlation rho
## 
## data:  merged[["padj"]] and merged[["deseq_adjp"]]
## S = 1e+10, p-value <2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##    rho 
## 0.9202
t_cf_neutrophil_de_sva[["dream"]] <- mixed_neutrophil_de
## Error in eval(expr, envir, enclos): object 'mixed_neutrophil_de' not found
test <- combine_de_tables(
  t_cf_neutrophil_de_sva, scale_p = TRUE,
  excel = "excel/test_neutrophil_combined.xlsx")
test_aucc <- calculate_aucc(big_table, tbl2 = neutrophil_dream_result,
                            px = "deseq_adjp", py = "adj.P.Val",
                            lx = "deseq_logfc", ly = "logFC")
## Error in eval(expr, envir, enclos): object 'neutrophil_dream_result' not found
logfc_plotter <- plot_linear_scatter(merged[, c("logFC", "deseq_logfc")])
## Error in `[.data.frame`(merged, , c("logFC", "deseq_logfc")): undefined columns selected
logfc_plot <- logfc_plotter[["scatter"]] +
  xlab("Dream log2FC with (1|donor) and visit in model") +
  ylab("DESeq2 log2FC: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (pearson)
{prettyNum(logfc_plotter[['lm_rsq']])} (r-squared)"))
pp(file = "figures/compare_cf_and_visit_in_model_neutrophil_logfc.svg")
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
previous_sig_idx <- merged[["deseq_adjp"]] <= 0.05 & abs(merged[["deseq_logfc"]] >= 1.0)
summary(previous_sig_idx)
##    Mode   FALSE    TRUE 
## logical    8971     130
previous_genes <- rownames(merged)[previous_sig_idx]

new_sig_idx <- abs(merged[["logFC"]]) >= 1.0 & merged[["P.Value"]] < 0.05
## Error in abs(merged[["logFC"]]): non-numeric argument to mathematical function
summary(new_sig_idx)
##    Mode   FALSE    TRUE    NA's 
## logical   16591     171     538
new_genes <- rownames(merged)[new_sig_idx]
na_idx <- is.na(new_genes)
new_genes <- new_genes[!na_idx]

annot <- fData(t_neutrophils)
compare <- Vennerable::Venn(list("previous" = previous_genes, "new" = new_genes))
shared_genes <- compare@IntersectionSets[["11"]]
name_idx <- rownames(annot) %in% shared_genes
annot[name_idx, ]
##  [1] ensembl_gene_id       ensembl_transcript_id version              
##  [4] transcript_version    description           gene_biotype         
##  [7] cds_length            chromosome_name       strand               
## [10] start_position        end_position          hgnc_symbol          
## [13] uniprot_gn_symbol     transcript            mean_cds_len         
## <0 rows> (or 0-length row.names)
Vennerable::plot(compare)

11.3.7 Eosinophils

eosinophil_dream_result <- mixed_eosinophil_de[["all_tables"]][["contrasts"]][[1]]
## Error in eval(expr, envir, enclos): object 'mixed_eosinophil_de' not found
big_table <- t_cf_eosinophil_table_sva[["data"]][["outcome"]]
merged <- merge(big_table, eosinophil_dream_result, by = "row.names")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'y' in selecting a method for function 'merge': object 'eosinophil_dream_result' not found
rownames(merged) <- merged[["Row.names"]]
merged[["Row.names"]] <- NULL
cor_value <- cor.test(merged[["logFC"]], merged[["deseq_logfc"]])
## Error in cor.test.default(merged[["logFC"]], merged[["deseq_logfc"]]): 'x' must be a numeric vector
cor_value
## 
##  Spearman's rank correlation rho
## 
## data:  merged[["padj"]] and merged[["deseq_adjp"]]
## S = 1e+10, p-value <2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##    rho 
## 0.9202
t_cf_eosinophil_de_sva[["dream"]] <- mixed_eosinophil_de
## Error in eval(expr, envir, enclos): object 'mixed_eosinophil_de' not found
test <- combine_de_tables(
  t_cf_eosinophil_de_sva, scale_p = TRUE,
  excel = "excel/test_eosinophil_combined.xlsx")
test_aucc <- calculate_aucc(big_table, tbl2 = eosinophil_dream_result,
                            px = "deseq_adjp", py = "adj.P.Val",
                            lx = "deseq_logfc", ly = "logFC")
## Error in eval(expr, envir, enclos): object 'eosinophil_dream_result' not found
logfc_plotter <- plot_linear_scatter(merged[, c("logFC", "deseq_logfc")])
## Error in `[.data.frame`(merged, , c("logFC", "deseq_logfc")): undefined columns selected
logfc_plot <- logfc_plotter[["scatter"]] +
  xlab("Dream log2FC with (1|donor) and visit in model") +
  ylab("DESeq2 log2FC: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (pearson)
{prettyNum(logfc_plotter[['lm_rsq']])} (r-squared)"))
pp(file = "figures/compare_cf_and_visit_in_model_eosinophil_logfc.svg")
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
previous_sig_idx <- merged[["deseq_adjp"]] <= 0.05 & abs(merged[["deseq_logfc"]] >= 1.0)
summary(previous_sig_idx)
##    Mode   FALSE    TRUE 
## logical    8971     130
previous_genes <- rownames(merged)[previous_sig_idx]

new_sig_idx <- abs(merged[["logFC"]]) >= 1.0 & merged[["P.Value"]] < 0.05
## Error in abs(merged[["logFC"]]): non-numeric argument to mathematical function
summary(new_sig_idx)
##    Mode   FALSE    TRUE    NA's 
## logical   16591     171     538
new_genes <- rownames(merged)[new_sig_idx]
na_idx <- is.na(new_genes)
new_genes <- new_genes[!na_idx]

annot <- fData(t_eosinophils)
compare <- Vennerable::Venn(list("previous" = previous_genes, "new" = new_genes))
shared_genes <- compare@IntersectionSets[["11"]]
name_idx <- rownames(annot) %in% shared_genes
annot[name_idx, ]
##  [1] ensembl_gene_id       ensembl_transcript_id version              
##  [4] transcript_version    description           gene_biotype         
##  [7] cds_length            chromosome_name       strand               
## [10] start_position        end_position          hgnc_symbol          
## [13] uniprot_gn_symbol     transcript            mean_cds_len         
## <0 rows> (or 0-length row.names)
Vennerable::plot(compare)

12 Perform dream with all samples together and a model with all factors

Now that I have performed all of the above, I think it should be possible to have a working analysis using dream that includes celltype, visitnumber, finaloutcome, donor, and perhaps SVs.

mixed_fstring <- "~ 0 + finaloutcome + typeofcells + visitnumber + (1|donor)"
mixed_formula <- as.formula(mixed_fstring)
mixed_fstring_svs <- "~ 0 + finaloutcome + typeofcells + visitnumber + (1|donor) + svaseq_SV1 + svaseq_SV2 + svaseq_SV3 + svaseq_SV4"
mixed_formula_svs <- as.formula(mixed_fstring_svs)
all_dream_de <- dream_pairwise(t_clinical_nobiop, alt_model = mixed_formula)
mixed_all_celltypes_de_xlsx <- write_de_table(all_dream_de, type = "limma", excel = glue("excel/mixed_all_celltypes_nobiop_table-v{ver}.xlsx"))
all_dream_result <- all_dream_de[["all_tables"]][["contrasts"]][["failure_vs_cure"]] %>%
  arrange(desc(logFC))
fc_sig_idx <- all_dream_result[["logFC"]] >= 1.0 & all_dream_result[["z.std"]] >= 2.0
dream_sig <- rownames(all_dream_result[fc_sig_idx, ])

svs_all_dream_de <- dream_pairwise(t_clinical_nobiop, alt_model = mixed_formula_svs)
test <- hpgl_padjust(svs_all_dream_de[["all_tables"]][["contrasts"]][[1]], pvalue_column = "P.Value",
                     mean_column = "AveExpr", method = "ihw", type = "limma")
t_clinical_outcomecell_fact <- paste0(pData(t_clinical_nobiop)[["finaloutcome"]], "_",
                                      pData(t_clinical_nobiop)[["typeofcells"]])
t_clinical_outcomecell <- t_clinical_nobiop
pData(t_clinical_outcomecell)[["outcomecell"]] <- t_clinical_outcomecell_fact
t_clinical_outcomecell <- set_expt_conditions(t_clinical_outcomecell, fact = "outcomecell")
## The numbers of samples by condition are:
## 
##    cure_eosinophils      cure_monocytes    cure_neutrophils failure_eosinophils 
##                  17                  21                  20                   9 
##   failure_monocytes failure_neutrophils 
##                  21                  21
t_clinical_outcomecell_de <- all_pairwise(t_clinical_outcomecell, keepers = outcometype_contrasts,
                                          model_batch = "svaseq")
## 
##    cure_eosinophils      cure_monocytes    cure_neutrophils failure_eosinophils 
##                  17                  21                  20                   9 
##   failure_monocytes failure_neutrophils 
##                  21                  21
## Error in checkForRemoteErrors(val): one node produced an error: c("Error in `[[<-.data.frame`(`*tmp*`, \"ebseq_mean\", value = c(1719.95643062343,  : \n  replacement has 11910 rows, data has 11907\n", "ebseq")
mixed_fstring <- "~ 0 + condition + visitnumber + (1|donor)"
t_clinical_outcomecell_dream <- dream_pairwise(t_clinical_outcomecell,
                                               alt_model = as.formula(mixed_fstring),
                                               keepers = outcometype_contrasts)
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$best_libsize.
## Dream/limma step 1/6: choosing model.
## Error in 1 | donor: operations are possible only for numeric, logical or complex types
t_clinical_outcomecell_table <- write_de_table(t_clinical_outcomecell_dream,
                                               type = "limma",
                                               excel = glue("excel/mixed_clinical_outcomecell-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_clinical_outcomecell_dream' not found
big_table <- t_cf_clinicalnb_table_sva[["data"]][["outcome"]]
merged <- merge(big_table, all_dream_result, by = "row.names")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'y' in selecting a method for function 'merge': object 'all_dream_result' not found
rownames(merged) <- merged[["Row.names"]]
merged[["Row.names"]] <- NULL
cor_value <- cor.test(merged[["logFC"]], merged[["deseq_logfc"]])
## Error in cor.test.default(merged[["logFC"]], merged[["deseq_logfc"]]): 'x' must be a numeric vector
cor_value
## 
##  Spearman's rank correlation rho
## 
## data:  merged[["padj"]] and merged[["deseq_adjp"]]
## S = 1e+10, p-value <2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##    rho 
## 0.9202
test_aucc <- calculate_aucc(big_table, tbl2 = monocyte_dream_result,
                            px = "deseq_adjp", py = "adj.P.Val",
                            lx = "deseq_logfc", ly = "logFC")
## Error in eval(expr, envir, enclos): object 'monocyte_dream_result' not found
test_aucc
## Error in eval(expr, envir, enclos): object 'test_aucc' not found
logfc_plotter <- plot_linear_scatter(merged[, c("logFC", "deseq_logfc")])
## Error in `[.data.frame`(merged, , c("logFC", "deseq_logfc")): undefined columns selected
logfc_plot <- logfc_plotter[["scatter"]] +
  xlab("Dream log2FC with (1|donor) and visit in model") +
  ylab("DESeq2 log2FC: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (pearson)"))
pp(file = "images/compare_cf_and_dream_clinical_samples.png")
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
logfc_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
cor_value <- cor.test(merged[["P.Value"]], merged[["deseq_adjp"]], method = "spearman")
## Error in cor.test.default(merged[["P.Value"]], merged[["deseq_adjp"]], : 'x' must be a numeric vector
cor_value
## 
##  Spearman's rank correlation rho
## 
## data:  merged[["padj"]] and merged[["deseq_adjp"]]
## S = 1e+10, p-value <2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##    rho 
## 0.9202
adjp_plotter <- plot_linear_scatter(merged[, c("P.Value", "deseq_adjp")])
## Error in `[.data.frame`(merged, , c("P.Value", "deseq_adjp")): undefined columns selected
adjp_plot <- adjp_plotter[["scatter"]] +
  xlab("DESeq2 adjp: Dream not-adjusted p-value") +
  ylab("DESeq2 adjp: Default pairwise comparison") +
  ggtitle(glue("Comparing results from models: {prettyNum(cor_value[['estimate']])} (spearman)"))
pp(file = "images/compare_cf_and_visit_in_model_monocyte_adjp.svg")
adjp_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
dev.off()
## png 
##   2
adjp_plot
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (9101).
## x Fix the following mappings: `colour`.
previous_sig_idx <- merged[["deseq_adjp"]] <= 0.05 & abs(merged[["deseq_logfc"]] >= 1.0)
summary(previous_sig_idx)
##    Mode   FALSE    TRUE 
## logical    8971     130
previous_genes <- rownames(merged)[previous_sig_idx]

new_sig_idx <- abs(merged[["logFC"]]) >= 1.0 & merged[["P.Value"]] < 0.05
## Error in abs(merged[["logFC"]]): non-numeric argument to mathematical function
summary(new_sig_idx)
##    Mode   FALSE    TRUE    NA's 
## logical   16591     171     538
new_genes <- rownames(merged)[new_sig_idx]
na_idx <- is.na(new_genes)
new_genes <- new_genes[!na_idx]

annot <- fData(t_monocytes)
compare <- Vennerable::Venn(list("previous" = previous_genes, "new" = new_genes))
shared_genes <- compare@IntersectionSets[["11"]]
name_idx <- rownames(annot) %in% shared_genes
annot[name_idx, ]
##  [1] ensembl_gene_id       ensembl_transcript_id version              
##  [4] transcript_version    description           gene_biotype         
##  [7] cds_length            chromosome_name       strand               
## [10] start_position        end_position          hgnc_symbol          
## [13] uniprot_gn_symbol     transcript            mean_cds_len         
## <0 rows> (or 0-length row.names)

Let us use the overlap_sig() from above to see how similar this result is to our DESeq2+SVA.

all_dream_table <- all_dream_de[["all_tables"]][["contrasts"]][["failure_vs_cure"]]
## Error in eval(expr, envir, enclos): object 'all_dream_de' not found
overlap_sig(all_dream_table)
## Error in eval(expr, envir, enclos): object 'all_dream_table' not found
overlap_sig(all_dream_table, direction = "gt", mixed_pcol = "z.std", mixed_cutoff = 1.5)
## Error in eval(expr, envir, enclos): object 'all_dream_table' not found
all_dream_table_svs <- svs_all_dream_de[["all_tables"]][["contrasts"]][["failure_vs_cure"]]
## Error in eval(expr, envir, enclos): object 'svs_all_dream_de' not found
overlap_sig(all_dream_table_svs)
## Error in eval(expr, envir, enclos): object 'all_dream_table_svs' not found
overlap_sig(all_dream_table_svs, direction = "gt", mixed_pcol = "z.std", mixed_cutoff = 1.5)
## Error in eval(expr, envir, enclos): object 'all_dream_table_svs' not found

12.1 Recapitulating the 10 genes of interest

One figure I did not create is a venn diagram showing the overlap of the eosionphil, neutrophil, and monocyte results and the 10 genes shared among them all. At least in theory I should be easily able to create a similar/identical plot.

observed_eosinophils <- c(
  rownames(t_cf_eosinophil_sig_sva[["deseq"]][["ups"]][["outcome"]]),
  rownames(t_cf_eosinophil_sig_sva[["deseq"]][["downs"]][["outcome"]]))
observed_monocytes <- c(
  rownames(t_cf_monocyte_sig_sva[["deseq"]][["ups"]][["outcome"]]),
  rownames(t_cf_monocyte_sig_sva[["deseq"]][["downs"]][["outcome"]]))
observed_neutrophils <- c(
  rownames(t_cf_neutrophil_sig_sva[["deseq"]][["ups"]][["outcome"]]),
  rownames(t_cf_neutrophil_sig_sva[["deseq"]][["downs"]][["outcome"]]))
venn_input <- list(
  "eosinophil" = observed_eosinophils,
  "monocyte" = observed_monocytes,
  "neutrophils" = observed_neutrophils)
shared <- Vennerable::Venn(venn_input)
shared
## A Venn object on 3 sets named
## eosinophil,monocyte,neutrophils 
## 000 100 010 110 001 101 011 111 
##   0 136  81  10 106  33   9  12
Vennerable::plot(shared)

intersect <- "eosinophil:monocyte:neutrophils"
celltype_upset <- UpSetR::upset(UpSetR::fromList(venn_input), text.scale = 2)
celltype_upset

celltype_shared_genes <- overlap_groups(venn_input)
celltype_geneids <- overlap_geneids(celltype_shared_genes, intersect)
ids <- attr(celltype_shared_genes, "elements")[celltype_shared_genes[[intersect]]]
ids
##       eosinophil4       eosinophil6       eosinophil7       eosinophil9 
## "ENSG00000089012" "ENSG00000137959" "ENSG00000115155" "ENSG00000165949" 
##      eosinophil23      eosinophil24      eosinophil28      eosinophil41 
## "ENSG00000186654" "ENSG00000248405" "ENSG00000188672" "ENSG00000177294" 
##      eosinophil46      eosinophil52      eosinophil54     eosinophil120 
## "ENSG00000134321" "ENSG00000214872" "ENSG00000184979" "ENSG00000196526"
rows <- fData(t_monocytes)[ids, ]
rows[["hgnc_symbol"]]
##  [1] "SIRPG"        "IFI44L"       "OTOF"         "IFI27"        "PRR5"        
##  [6] "PRR5-ARHGAP8" "RHCE"         "FBXO39"       "RSAD2"        "SMTNL1"      
## [11] "USP18"        "AFAP1"

Note to self, when I rendered the html, stupid R ran out of temp files and so did not actually print the darn html document, as a result I modified the render function to try to make sure there is a clean directory in which to work; testing now. If it continues to not work, I will need to remove some of the images created in this document.

13 A question of p-values

Maria Adelaida has asked about the distribution of (non)adjusted p-values produced by the various methods we employed. I use BH by default; so lets take a moment to examine the distribution of p-values and how they get adjusted by BH and a few of the other methods.

dream_pvalues <- all_dream_table[["P.Value"]]
## Error in eval(expr, envir, enclos): object 'all_dream_table' not found
names(dream_pvalues) <- rownames(all_dream_table)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'all_dream_table' not found
deseq_pvalues <- t_cf_clinicalnb_table_sva[["data"]][["outcome"]][["deseq_p"]]
names(deseq_pvalues) <- rownames(t_cf_clinicalnb_table_sva[["data"]][["outcome"]])

## Note, my xlsx files provide these images.
plot_histogram(dream_pvalues)
## Error in eval(expr, envir, enclos): object 'dream_pvalues' not found
plot_histogram(deseq_pvalues)

Immediately we see that the values produced have very different distributions and that, though there are many low p-values produced by dream, they are far fewer than observed by deseq.

Now consider the BH correction; using it, we rank order the p-values from lowest to highest. Then we choose a denominator for every p-value which ranges from 1 to the number of elements in the set of p-values. Finally we take the minimum between 1 and the cumulative minimum of (#pvalues/denominator) * that-pvalue. Written out the process looks like this:

test_pvalues <- deseq_pvalues
idx <- order(test_pvalues)
test_pvalues <- test_pvalues[idx]
num_pvalues <- length(test_pvalues)
new_pvalues <- test_pvalues
for (i in seq_along(test_pvalues)) {
  element <- test_pvalues[i]
  new_pvalues[i] <- min(1, cummin((num_pvalues / i) * element))
}
test_against <- p.adjust(test_pvalues, method = "BH")

So, consider for a moment the first p-values produced by deseq: 1.195e-24, 3.489e-22, 9.612e-22, 4.853e-18, 9.864e-15, 3.275e-14

The new p-values will be the (number of genes / the current position) * the current element

  • (11910 / 1) * 1.195e-24 which is 1.423e-10
  • (11910 / 2) * 3.489e-22 which is 2.078e-18
  • (11910 / 3) * 9.612e-22 which is 3.816e-18
  • (11910 / 4) * 4.853e-18 which is 1.445e-14
  • (11910 / 5) * 9.864e-15 which is 2.350e-11
  • (11910 / 6) * 3.275e-14 which is 6.501e-11

In contrast, consider the first few values from dream ordered in the same fashion: 2.162e-07, 3.757e-05, 8.119e-05, 1.664e-04, 3.123e-04, 5.600e-04

These start at values which are 1e17 higher than those from DESeq and so we can expect the resulting values to end up starting at ~ 5e11 higher than similar values. Thus when we do the math (and be amused at the fact that the number of p-values in the table is a factor of 2,3,4,5,6):

11910 * 2.16e-07: 0.002573 5955 * 3.757e-5: 0.223711 3970 * 8.119e-5: 0.322297 2978 * 1.664e-4: 0.4955 2382 * 3.123e-4: 0.743836 1985 * 5.600e-4: 1.112 which is caught by pmin() and reset to 1.

14 Print some volcano plots

Having performed all of the above, let us plot some of the results with a few labels of the top-10 genes on each side of the contrasts.

num_color <- color_choices[["clinic_cf"]][["tumaco_failure"]]
den_color <- color_choices[["clinic_cf"]][["tumaco_cure"]]

cf_monocyte_table <- t_cf_monocyte_table_sva[["data"]][["outcome"]]
cf_monocyte_volcano <- plot_volcano_condition_de(
  cf_monocyte_table, "outcome", label = expected_genes,
  fc_col = "deseq_logfc", p_col = "deseq_adjp", line_position = NULL,
  color_high = num_color, color_low = den_color, label_size = 6)
pp(file = "figures/cf_monocyte_volcano_labeled.svg")
cf_monocyte_volcano[["plot"]]
dev.off()
cf_monocyte_volcano[["plot"]]

cf_monocyte_volcano_top10 <- plot_volcano_condition_de(
  cf_monocyte_table, "outcome", label = 10,
  fc_col = "deseq_logfc", p_col = "deseq_adjp", line_position = NULL,
  color_high = num_color, color_low = den_color, label_size = 6)
pp(file = glue("images/cf_monocyte_volcano_labeled_top10-v{ver}.svg"))
cf_monocyte_volcano_top10[["plot"]]
dev.off()
cf_monocyte_volcano_top10[["plot"]]

cf_eosinophil_table <- t_cf_eosinophil_table_sva[["data"]][["outcome"]]
cf_eosinophil_volcano <- plot_volcano_condition_de(
  cf_eosinophil_table, "outcome", label = expected_genes,
  fc_col = "deseq_logfc", p_col = "deseq_adjp", line_position = NULL,
  color_high = num_color, color_low = den_color, label_size = 6)
pp(file = "figures/cf_eosinophil_volcano_labeled.svg")
cf_eosinophil_volcano[["plot"]]
dev.off()
cf_eosinophil_volcano[["plot"]]

cf_eosinophil_volcano_top10 <- plot_volcano_condition_de(
  cf_eosinophil_table, "outcome", label = 10,
  fc_col = "deseq_logfc", p_col = "deseq_adjp", line_position = NULL,
  color_high = num_color, color_low = den_color, label_size = 6)
pp(file = glue("images/cf_eosinophil_volcano_labeled_top10-v{ver}.svg"))
cf_eosinophil_volcano_top10[["plot"]]
dev.off()
cf_eosinophil_volcano_top10[["plot"]]

cf_neutrophil_table <- t_cf_neutrophil_table_sva[["data"]][["outcome"]]
cf_neutrophil_volcano <- plot_volcano_condition_de(
  cf_neutrophil_table, "outcome", label = _genes,
  fc_col = "deseq_logfc", p_col = "deseq_adjp", line_position = NULL,
  color_high = num_color, color_low = den_color, label_size = 6)
pp(file = "figures/cf_neutrophil_volcano_labeled.svg")
cf_neutrophil_volcano[["plot"]]
dev.off()
cf_neutrophil_volcano[["plot"]]

cf_neutrophil_volcano_top10 <- plot_volcano_condition_de(
  cf_neutrophil_table, "outcome", label = 10,
  fc_col = "deseq_logfc", p_col = "deseq_adjp", line_position = NULL,
  color_high = num_color, color_low = den_color, label_size = 6)
pp(file = glue("images/cf_neutrophil_volcano_labeled_top10-v{ver}.svg"))
cf_neutrophil_volcano_top10[["plot"]]
dev.off()
cf_neutrophil_volcano_top10[["plot"]]
## Error: <text>:44:44: unexpected symbol
## 43: cf_neutrophil_volcano <- plot_volcano_condition_de(
## 44:   cf_neutrophil_table, "outcome", label = _genes
##                                                ^

15 Eosinophil time comparisons

15.1 Visit 1

t_cf_eosinophil_v1_de_sva <- all_pairwise(tv1_eosinophils, model_batch = "svaseq",
                                          parallel = parallel, filter = TRUE,
                                          methods = methods)
## 
##    tumaco_cure tumaco_failure 
##              5              3
## Error in checkForRemoteErrors(val): 5 nodes produced errors; first error: c("Error in assign(levels[i], indicator(i, n), pos = levelsenv) : \n  attempt to use zero-length variable name\n", "deseq")
t_cf_eosinophil_v1_de_sva
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v1_de_sva' not found
t_cf_eosinophil_v1_table_sva <- combine_de_tables(
  t_cf_eosinophil_v1_de_sva, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_v1_cf_table_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v1_de_sva' not found
t_cf_eosinophil_v1_table_sva
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v1_table_sva' not found
t_cf_eosinophil_v1_sig_sva <- extract_significant_genes(
  t_cf_eosinophil_v1_table_sva,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_v1_cf_sig_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v1_table_sva' not found
t_cf_eosinophil_v1_table_sva
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v1_table_sva' not found
dim(t_cf_eosinophil_v1_sig_sva$deseq$ups[[1]])
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v1_sig_sva' not found
dim(t_cf_eosinophil_v1_sig_sva$deseq$downs[[1]])
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v1_sig_sva' not found

15.2 Visit 2

t_cf_eosinophil_v2_de_sva <- all_pairwise(tv2_eosinophils, model_batch = "svaseq",
                                          parallel = parallel, filter = TRUE,
                                          methods = methods)
## 
##    tumaco_cure tumaco_failure 
##              6              3
## Error in checkForRemoteErrors(val): 5 nodes produced errors; first error: c("Error in assign(levels[i], indicator(i, n), pos = levelsenv) : \n  attempt to use zero-length variable name\n", "deseq")
t_cf_eosinophil_v2_de_sva
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v2_de_sva' not found
t_cf_eosinophil_v2_table_sva <- combine_de_tables(
  t_cf_eosinophil_v2_de_sva, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_v2_cf_table_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v2_de_sva' not found
t_cf_eosinophil_v2_table_sva
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v2_table_sva' not found
t_cf_eosinophil_v2_sig_sva <- extract_significant_genes(
  t_cf_eosinophil_v2_table_sva,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_v2_cf_sig_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v2_table_sva' not found
t_cf_eosinophil_v2_sig_sva
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v2_sig_sva' not found
dim(t_cf_eosinophil_v2_sig_sva$deseq$ups[[1]])
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v2_sig_sva' not found
dim(t_cf_eosinophil_v2_sig_sva$deseq$downs[[1]])
## Error in eval(expr, envir, enclos): object 't_cf_eosinophil_v2_sig_sva' not found

15.3 Visit 3

t_cf_eosinophil_v3_de_sva <- all_pairwise(tv3_eosinophils, model_batch = "svaseq",
                                          parallel = parallel, filter = TRUE,
                                          methods = methods)
## 
##    tumaco_cure tumaco_failure 
##              6              3
t_cf_eosinophil_v3_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 tmc_flr___
## limma_vs_deseq      0.9137
## limma_vs_edger      0.9138
## limma_vs_ebseq      0.7984
## limma_vs_basic      0.8620
## limma_vs_noiseq     0.7990
## limma_vs_dream      0.9683
## deseq_vs_edger      1.0000
## deseq_vs_ebseq      0.8832
## deseq_vs_basic      0.8019
## deseq_vs_noiseq     0.8126
## deseq_vs_dream      0.8661
## edger_vs_ebseq      0.8833
## edger_vs_basic      0.8021
## edger_vs_noiseq     0.8129
## edger_vs_dream      0.8663
## ebseq_vs_basic      0.8927
## ebseq_vs_noiseq     0.9402
## ebseq_vs_dream      0.7588
## basic_vs_noiseq     0.8925
## basic_vs_dream      0.8287
## noiseq_vs_dream     0.8097
t_cf_eosinophil_v3_table_sva <- combine_de_tables(
  t_cf_eosinophil_v3_de_sva, keepers = t_cf_contrast, scale_p = TRUE,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_v3_cf_table_sva-v{ver}.xlsx"))
t_cf_eosinophil_v3_table_sva
## A set of combined differential expression results.
##                           table deseq_sigup deseq_sigdown edger_sigup
## 1 tumaco_failure_vs_tumaco_cure          68            29          73
##   edger_sigdown limma_sigup limma_sigdown
## 1            10           0             0
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_cf_eosinophil_v3_sig_sva <- extract_significant_genes(
  t_cf_eosinophil_v3_table_sva,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_v3_cf_sig_sva-v{ver}.xlsx"))
t_cf_eosinophil_v3_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##         limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## outcome        0          0       73         10       68         29        2
##         ebseq_down basic_up basic_down
## outcome          9        0          0

dim(t_cf_eosinophil_v3_sig_sva$deseq$ups[[1]])
## [1] 68 84
dim(t_cf_eosinophil_v3_sig_sva$deseq$downs[[1]])
## [1] 29 84

15.4 Eosinophils: Compare sva to batch-in-visit

sva_aucc <- calculate_aucc(t_cf_eosinophil_table_sva[["data"]][[1]],
                           tbl2 = t_cf_eosinophil_table_batchvisit[["data"]][[1]],
                           py = "deseq_adjp", ly = "deseq_logfc")
sva_aucc
## These two tables have an aucc value of: 0.576029928864987 and correlation:
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 152, df = 10530, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.823 0.835
## sample estimates:
##    cor 
## 0.8291

shared_ids <- rownames(t_cf_eosinophil_table_sva[["data"]][[1]]) %in%
  rownames(t_cf_eosinophil_table_batchvisit[["data"]][[1]])
first <- t_cf_eosinophil_table_sva[["data"]][[1]][shared_ids, ]
second <- t_cf_eosinophil_table_batchvisit[["data"]][[1]][rownames(first), ]
cor.test(first[["deseq_logfc"]], second[["deseq_logfc"]])
## 
##  Pearson's product-moment correlation
## 
## data:  first[["deseq_logfc"]] and second[["deseq_logfc"]]
## t = 152, df = 10530, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.823 0.835
## sample estimates:
##    cor 
## 0.8291

15.5 Compare monocyte CF, neutrophil CF, eosinophil CF

t_mono_neut_sva_aucc <- calculate_aucc(t_cf_monocyte_table_sva[["data"]][["outcome"]],
                                       tbl2 = t_cf_neutrophil_table_sva[["data"]][["outcome"]],
                                       py = "deseq_adjp", ly = "deseq_logfc")
t_mono_neut_sva_aucc
## These two tables have an aucc value of: 0.204316386168083 and correlation:
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 43, df = 8577, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4028 0.4376
## sample estimates:
##    cor 
## 0.4203

t_mono_eo_sva_aucc <- calculate_aucc(t_cf_monocyte_table_sva[["data"]][["outcome"]],
                                     tbl2 = t_cf_eosinophil_table_sva[["data"]][["outcome"]],
                                     py = "deseq_adjp", ly = "deseq_logfc")
t_mono_eo_sva_aucc
## These two tables have an aucc value of: 0.0963678364630121 and correlation:
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 22, df = 9765, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2015 0.2393
## sample estimates:
##    cor 
## 0.2205

t_neut_eo_sva_aucc <- calculate_aucc(t_cf_neutrophil_table_sva[["data"]][["outcome"]],
                                     tbl2 = t_cf_eosinophil_table_sva[["data"]][["outcome"]],
                                     py = "deseq_adjp", ly = "deseq_logfc")
t_neut_eo_sva_aucc
## These two tables have an aucc value of: 0.20148477670576 and correlation:
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 42, df = 8571, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3973 0.4323
## sample estimates:
##   cor 
## 0.415

16 By visit

For these contrasts, we want to see fail_v1 vs. cure_v1, fail_v2 vs. cure_v2 etc. As a result, we will need to juggle the data slightly and add another set of contrasts.

16.1 Cure/Fail by visits, all cell types

t_visit_cf_all_de_sva <- all_pairwise(t_visitcf, model_batch = "svaseq",
                                      parallel = parallel, filter = TRUE,
                                      methods = methods)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##         30         24         20         15         17         17
## Error in checkForRemoteErrors(val): one node produced an error: c("Error in `[[<-.data.frame`(`*tmp*`, \"ebseq_mean\", value = c(17.6643825538179,  : \n  replacement has 14156 rows, data has 14155\n", "ebseq")
t_visit_cf_all_de_sva
## Error in eval(expr, envir, enclos): object 't_visit_cf_all_de_sva' not found
t_visit_cf_all_table_sva <- combine_de_tables(
  t_visit_cf_all_de_sva, keepers = visitcf_contrasts, scale_p = TRUE,
  excel = glue("{cf_prefix}/t_all_visitcf_table_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_visit_cf_all_de_sva' not found
t_visit_cf_all_table_sva
## Error in eval(expr, envir, enclos): object 't_visit_cf_all_table_sva' not found
t_visit_cf_all_sig_sva <- extract_significant_genes(
  t_visit_cf_all_table_sva,
  excel = glue("{cf_prefix}/t_all_visitcf_sig_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_visit_cf_all_table_sva' not found
t_visit_cf_all_sig_sva
## Error in eval(expr, envir, enclos): object 't_visit_cf_all_sig_sva' not found

16.2 Cure/Fail by visit, Monocytes

In the following block, I am including all samples for the monocytes and splitting them up by visit and then comparing v1 cure/fail, v2 cure/fail, v3 cure/fail.

I expect that this should be more robust than the datasets of only visit 1.

visitcf_factor <- paste0("v", pData(t_monocytes)[["visitnumber"]], "_",
                         pData(t_monocytes)[["finaloutcome"]])
t_monocytes_visitcf <- set_expt_conditions(t_monocytes, fact = visitcf_factor)
## The numbers of samples by condition are:
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          8          8          7          6          6          7
t_visit_cf_monocyte_de_sva <- all_pairwise(t_monocytes_visitcf, model_batch = "svaseq",
                                           parallel = parallel, filter = TRUE,
                                           methods = methods)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          8          8          7          6          6          7
t_visit_cf_monocyte_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
t_visit_cf_monocyte_table_sva <- combine_de_tables(
  t_visit_cf_monocyte_de_sva, keepers = visitcf_contrasts, scale_p = TRUE,
  excel = glue("{cf_prefix}/Monocytes/t_monocyte_visitcf_table_sva-v{ver}.xlsx"))
t_visit_cf_monocyte_table_sva
## A set of combined differential expression results.
##                   table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 v1_failure_vs_v1_cure          15            10          10            13
## 2 v2_failure_vs_v2_cure           0             0           0             0
## 3 v3_failure_vs_v3_cure           0             0           0             0
##   limma_sigup limma_sigdown
## 1           1             1
## 2           0             0
## 3           0             0
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_visit_cf_monocyte_sig_sva <- extract_significant_genes(
  t_visit_cf_monocyte_table_sva,
  excel = glue("{cf_prefix}/Monocytes/t_monocyte_visitcf_sig_sva-v{ver}.xlsx"))
t_visit_cf_monocyte_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##      limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## v1cf        1          1       10         13       15         10        0
## v2cf        0          0        0          0        0          0        1
## v3cf        0          0        0          0        0          0        0
##      ebseq_down basic_up basic_down
## v1cf         15        0          0
## v2cf          5        0          0
## v3cf          1        0          0

t_v1fc_deseq_ma <- t_visit_cf_monocyte_table_sva[["plots"]][["v1cf"]][["deseq_ma_plots"]]
dev <- pp(file = "images/monocyte_cf_de_v1_maplot.png")
t_v1fc_deseq_ma
closed <- dev.off()
t_v1fc_deseq_ma

t_v2fc_deseq_ma <- t_visit_cf_monocyte_table_sva[["plots"]][["v2cf"]][["deseq_ma_plots"]]
dev <- pp(file = "images/monocyte_cf_de_v2_maplot.png")
t_v2fc_deseq_ma
closed <- dev.off()
t_v2fc_deseq_ma

t_v3fc_deseq_ma <- t_visit_cf_monocyte_table_sva[["plots"]][["v3cf"]][["deseq_ma_plots"]]
dev <- pp(file = "images/monocyte_cf_de_v3_maplot.png")
t_v3fc_deseq_ma
closed <- dev.off()
t_v3fc_deseq_ma

One query from Alejandro is to look at the genes shared up/down across visits. I am not entirely certain we have enough samples for this to work, but let us find out.

I am thinking this is a good place to use the AUCC curves I learned about thanks to Julie Cridland.

Note that the following is all monocyte samples, this should therefore potentially be moved up and a version of this with only the Tumaco samples put here?

v1cf <- t_visit_cf_monocyte_table_sva[["data"]][["v1cf"]]
v2cf <- t_visit_cf_monocyte_table_sva[["data"]][["v2cf"]]
v3cf <- t_visit_cf_monocyte_table_sva[["data"]][["v3cf"]]

v1_sig <- c(
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["ups"]][["v1cf"]]),
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["downs"]][["v1cf"]]))
length(v1_sig)
## [1] 25
v2_sig <- c(
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["ups"]][["v2cf"]]),
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["downs"]][["v2cf"]]))
length(v2_sig)
## [1] 0
v3_sig <- c(
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["ups"]][["v2cf"]]),
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["downs"]][["v2cf"]]))
length(v3_sig)
## [1] 0
t_monocyte_visit_aucc_v2v1 <- calculate_aucc(v1cf, tbl2 = v2cf,
                                             py = "deseq_adjp", ly = "deseq_logfc")
dev <- pp(file = "images/monocyte_visit_v2v1_aucc.png")
t_monocyte_visit_aucc_v2v1[["plot"]]
closed <- dev.off()
t_monocyte_visit_aucc_v2v1[["plot"]]

t_monocyte_visit_aucc_v3v1 <- calculate_aucc(v1cf, tbl2 = v3cf,
                                             py = "deseq_adjp", ly = "deseq_logfc")
dev <- pp(file = "images/monocyte_visit_v3v1_aucc.png")
t_monocyte_visit_aucc_v3v1[["plot"]]
closed <- dev.off()
t_monocyte_visit_aucc_v3v1[["plot"]]

16.3 Cure/Fail by visit, Neutrophils

visitcf_factor <- paste0("v", pData(t_neutrophils)[["visitnumber"]], "_",
                         pData(t_neutrophils)[["finaloutcome"]])
t_neutrophil_visitcf <- set_expt_conditions(t_neutrophils, fact = visitcf_factor)
## The numbers of samples by condition are:
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          8          8          7          6          5          7
t_visit_cf_neutrophil_de_sva <- all_pairwise(t_neutrophil_visitcf, model_batch = "svaseq",
                                             parallel = parallel, filter = TRUE,
                                             methods = methods)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          8          8          7          6          5          7
t_visit_cf_neutrophil_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
t_visit_cf_neutrophil_table_sva <- combine_de_tables(
  t_visit_cf_neutrophil_de_sva, keepers = visitcf_contrasts, scale_p = TRUE,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_visitcf_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_Fail/Neutrophils/t_neutrophil_visitcf_table_sva-v202412.xlsx before writing the tables.
t_visit_cf_neutrophil_table_sva
## A set of combined differential expression results.
##                   table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 v1_failure_vs_v1_cure          12             6           6             6
## 2 v2_failure_vs_v2_cure           2             6           2             3
## 3 v3_failure_vs_v3_cure           2             2           0             2
##   limma_sigup limma_sigdown
## 1           1             0
## 2           0             0
## 3           0             0
## Plot describing unique/shared genes in a differential expression table.

t_visit_cf_neutrophil_sig_sva <- extract_significant_genes(
  t_visit_cf_neutrophil_table_sva,
  excel = glue("{cf_prefix}/Neutrophils/t_neutrophil_visitcf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_Fail/Neutrophils/t_neutrophil_visitcf_sig_sva-v202412.xlsx before writing the tables.
t_visit_cf_neutrophil_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##      limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## v1cf        1          0        6          6       12          6        0
## v2cf        0          0        2          3        2          6        1
## v3cf        0          0        0          2        2          2        2
##      ebseq_down basic_up basic_down
## v1cf          2        0          0
## v2cf          1        0          0
## v3cf          3        0          0

16.4 Cure/Fail by visit, Eosinophils

visitcf_factor <- paste0("v", pData(t_eosinophils)[["visitnumber"]], "_",
                         pData(t_eosinophils)[["finaloutcome"]])
t_eosinophil_visitcf <- set_expt_conditions(t_eosinophils, fact = visitcf_factor)
## The numbers of samples by condition are:
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          5          3          6          3          6          3
t_visit_cf_eosinophil_de_sva <- all_pairwise(t_eosinophil_visitcf, model_batch = "svaseq",
                                             parallel = parallel, filter = TRUE,
                                             methods = methods, keepers = visitcf_contrasts)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          5          3          6          3          6          3
## Warning in correlate_de_tables(results, annot_df = annot_df, extra_contrasts =
## extra_contrasts): The merge of ebseq, v2_cure_vs_v1_cure and basic,
## v2_cure_vs_v1_cure failed.
## Warning in correlate_de_tables(results, annot_df = annot_df, extra_contrasts =
## extra_contrasts): The merge of ebseq, v2_failure_vs_v1_cure and basic,
## v2_failure_vs_v1_cure failed.
## Warning in correlate_de_tables(results, annot_df = annot_df, extra_contrasts =
## extra_contrasts): The merge of ebseq, v2_cure_vs_v1_cure and noiseq,
## v2_cure_vs_v1_cure failed.
## Warning in correlate_de_tables(results, annot_df = annot_df, extra_contrasts =
## extra_contrasts): The merge of ebseq, v2_failure_vs_v1_cure and noiseq,
## v2_failure_vs_v1_cure failed.
## Warning in correlate_de_tables(results, annot_df = annot_df, extra_contrasts =
## extra_contrasts): The merge of ebseq, v2_cure_vs_v1_cure and dream,
## v2_cure_vs_v1_cure failed.
## Warning in correlate_de_tables(results, annot_df = annot_df, extra_contrasts =
## extra_contrasts): The merge of ebseq, v2_failure_vs_v1_cure and dream,
## v2_failure_vs_v1_cure failed.
t_visit_cf_eosinophil_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
t_visit_cf_eosinophil_table_sva <- combine_de_tables(
  t_visit_cf_eosinophil_de_sva, keepers = visitcf_contrasts, scale_p = TRUE,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_visitcf_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_Fail/Eosinophils/t_eosinophil_visitcf_table_sva-v202412.xlsx before writing the tables.
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
t_visit_cf_eosinophil_table_sva
## A set of combined differential expression results.
##                   table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 v1_failure_vs_v1_cure           9            11           2             3
## 2 v2_failure_vs_v2_cure           4             3           5             2
## 3 v3_failure_vs_v3_cure          14             7          17             2
##   limma_sigup limma_sigdown
## 1           0             1
## 2           0             0
## 3           0             0
## Plot describing unique/shared genes in a differential expression table.

t_visit_cf_eosinophil_sig_sva <- extract_significant_genes(
  t_visit_cf_eosinophil_table_sva,
  excel = glue("{cf_prefix}/Eosinophils/t_eosinophil_visitcf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_Fail/Eosinophils/t_eosinophil_visitcf_sig_sva-v202412.xlsx before writing the tables.
t_visit_cf_eosinophil_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##      limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## v1cf        0          1        2          3        9         11        4
## v2cf        0          0        5          2        4          3       11
## v3cf        0          0       17          2       14          7        3
##      ebseq_down basic_up basic_down
## v1cf         86        0          0
## v2cf         18        0          0
## v3cf         10        0          0

17 Shared genes in visit 1

Let us see how many genes are shared across these three visits using only the visit 1 data.

observed_v1_eosinophils <- c(
  rownames(t_cf_eosinophil_v1_sig_sva[["deseq"]][["ups"]][["outcome"]]),
  rownames(t_cf_eosinophil_v1_sig_sva[["deseq"]][["downs"]][["outcome"]]))
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 't_cf_eosinophil_v1_sig_sva' not found
observed_v1_monocytes <- c(
  rownames(t_cf_monocyte_v1_sig_sva[["deseq"]][["ups"]][["outcome"]]),
  rownames(t_cf_monocyte_v1_sig_sva[["deseq"]][["downs"]][["outcome"]]))
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 't_cf_monocyte_v1_sig_sva' not found
observed_v1_neutrophils <- c(
  rownames(t_cf_neutrophil_v1_sig_sva[["deseq"]][["ups"]][["outcome"]]),
  rownames(t_cf_neutrophil_v1_sig_sva[["deseq"]][["downs"]][["outcome"]]))
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 't_cf_neutrophil_v1_sig_sva' not found
venn_input <- list(
  "eosinophil" = observed_v1_eosinophils,
  "monocyte" = observed_v1_monocytes,
  "neutrophils" = observed_v1_neutrophils)
## Error in eval(expr, envir, enclos): object 'observed_v1_eosinophils' not found
shared <- Vennerable::Venn(venn_input)
shared
## A Venn object on 3 sets named
## eosinophil,monocyte,neutrophils 
## 000 100 010 110 001 101 011 111 
##   0 136  81  10 106  33   9  12
Vennerable::plot(shared)

Najib suggests that we should look at all cell types together at visit 1. Let us try and see what happens… Oh, I already did this in the block ‘Separate the Tumaco data by visit’ above.

Let us add a new block in which we test a concern: if we explicitly add visit to the model (with sva, potentially without too), will that change the results we observe? My assumption is that it should change the results very minimally; but we should make absolutely certain that this is true. The neutrophils are the place to test this first because they have some of the most variance observed in the data.

Therefore I want to have an instance of the pairwise contrast that has a model of ~ finaloutcome + visitnumber + SVs where the SVs come from an invocation of sva which also has finaloutcome + visitnumber before the null model.

In theory, all_pairwise() is able to do this via the argument alt_model, but it may be safer to do it manually in order to absolutely ensure that nothing unintended happens.

18 Persistence in visit 3

Having put some SL read mapping information in the sample sheet, Maria Adelaida added a new column using it with the putative persistence state on a per-sample basis. One question which arised from that: what differences are observable between the persistent yes vs. no samples on a per-cell-type basis among the visit 3 samples.

18.1 Setting up

First things first, create the datasets.

persistence_expt <- subset_expt(t_clinical, subset = "persistence=='Y'|persistence=='N'") %>%
  subset_expt(subset = 'visitnumber==3') %>%
  set_expt_conditions(fact = 'persistence')
## subset_expt(): There were 123, now there are 83 samples.
## subset_expt(): There were 83, now there are 30 samples.
## The numbers of samples by condition are:
## 
##  N  Y 
##  6 24
## persistence_biopsy <- subset_expt(persistence_expt, subset = "typeofcells=='biopsy'")
persistence_monocyte <- subset_expt(persistence_expt, subset = "typeofcells=='monocytes'")
## subset_expt(): There were 30, now there are 12 samples.
persistence_neutrophil <- subset_expt(persistence_expt, subset = "typeofcells=='neutrophils'")
## subset_expt(): There were 30, now there are 10 samples.
persistence_eosinophil <- subset_expt(persistence_expt, subset = "typeofcells=='eosinophils'")
## subset_expt(): There were 30, now there are 8 samples.

18.2 Take a look

See if there are any patterns which look usable.

## All
persistence_norm <- normalize_expt(persistence_expt, transform = "log2", convert = "cpm",
                                   norm = "quant", filter = TRUE)
## Removing 2767 low-count genes (11389 remaining).
## transform_counts: Found 15 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_norm)[["plot"]]

persistence_nb <- normalize_expt(persistence_expt, transform = "log2", convert = "cpm",
                                 batch = "svaseq", filter = TRUE)
## Removing 2767 low-count genes (11389 remaining).
## Setting 1544 low elements to zero.
## transform_counts: Found 1544 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_nb)[["plot"]]

## Biopsies
##persistence_biopsy_norm <- normalize_expt(persistence_biopsy, transform = "log2", convert = "cpm",
##                                   norm = "quant", filter = TRUE)
##plot_pca(persistence_biopsy_norm)[["plot"]]
## Insufficient data

## Monocytes
persistence_monocyte_norm <- normalize_expt(persistence_monocyte, transform = "log2", convert = "cpm",
                                            norm = "quant", filter = TRUE)
## Removing 3827 low-count genes (10329 remaining).
## transform_counts: Found 1 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_monocyte_norm)[["plot"]]

persistence_monocyte_nb <- normalize_expt(persistence_monocyte, transform = "log2", convert = "cpm",
                                          batch = "svaseq", filter = TRUE)
## Removing 3827 low-count genes (10329 remaining).
## Setting 47 low elements to zero.
## transform_counts: Found 47 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_monocyte_nb)[["plot"]]

## Neutrophils
persistence_neutrophil_norm <- normalize_expt(persistence_neutrophil, transform = "log2", convert = "cpm",
                                              norm = "quant", filter = TRUE)
## Removing 5762 low-count genes (8394 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_neutrophil_norm)[["plot"]]

persistence_neutrophil_nb <- normalize_expt(persistence_neutrophil, transform = "log2", convert = "cpm",
                                            batch = "svaseq", filter = TRUE)
## Removing 5762 low-count genes (8394 remaining).
## Setting 46 low elements to zero.
## transform_counts: Found 46 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_neutrophil_nb)[["plot"]]

## Eosinophils
persistence_eosinophil_norm <- normalize_expt(persistence_eosinophil, transform = "log2", convert = "cpm",
                                              norm = "quant", filter = TRUE)
## Removing 4126 low-count genes (10030 remaining).
## transform_counts: Found 1 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_eosinophil_norm)[["plot"]]

persistence_eosinophil_nb <- normalize_expt(persistence_eosinophil, transform = "log2", convert = "cpm",
                                            batch = "svaseq", filter = TRUE)
## Removing 4126 low-count genes (10030 remaining).
## Setting 25 low elements to zero.
## transform_counts: Found 25 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_eosinophil_nb)[["plot"]]

18.3 persistence DE

This is pretty sparse and unlikely to yield any interesting results I am thinking.

persistence_de_sva <- all_pairwise(persistence_expt, filter = TRUE, methods = methods,
                                   parallel = parallel, model_batch = "svaseq")
## 
##  N  Y 
##  6 24
persistence_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 Y_vs_N
## limma_vs_deseq  0.8112
## limma_vs_edger  0.8765
## limma_vs_ebseq  0.7876
## limma_vs_basic  0.8217
## limma_vs_noiseq 0.7477
## limma_vs_dream  0.9789
## deseq_vs_edger  0.9605
## deseq_vs_ebseq  0.7777
## deseq_vs_basic  0.7178
## deseq_vs_noiseq 0.7448
## deseq_vs_dream  0.8040
## edger_vs_ebseq  0.7900
## edger_vs_basic  0.7791
## edger_vs_noiseq 0.8002
## edger_vs_dream  0.8695
## ebseq_vs_basic  0.7451
## ebseq_vs_noiseq 0.8327
## ebseq_vs_dream  0.7899
## basic_vs_noiseq 0.9152
## basic_vs_dream  0.7992
## noiseq_vs_dream 0.7236
persistence_table_sva <- combine_de_tables(
  persistence_de_sva, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Persistence/persistence_all_de_sva-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
persistence_table_sva
## A set of combined differential expression results.
##    table deseq_sigup deseq_sigdown edger_sigup edger_sigdown limma_sigup
## 1 Y_vs_N          55            44          26            49           7
##   limma_sigdown
## 1            22
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

persistence_monocyte_de_sva <- all_pairwise(persistence_monocyte, filter = TRUE,
                                            parallel = parallel, model_batch = "svaseq",
                                            methods = methods)
## 
##  N  Y 
##  2 10
## Error in checkForRemoteErrors(val): 5 nodes produced errors; first error: c("Error in assign(levels[i], indicator(i, n), pos = levelsenv) : \n  attempt to use zero-length variable name\n", "deseq")
persistence_monocyte_de_sva
## Error in eval(expr, envir, enclos): object 'persistence_monocyte_de_sva' not found
persistence_monocyte_table_sva <- combine_de_tables(
  persistence_monocyte_de_sva, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Persistence/persistence_monocyte_de_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 'persistence_monocyte_de_sva' not found
persistence_monocyte_table_sva
## Error in eval(expr, envir, enclos): object 'persistence_monocyte_table_sva' not found
persistence_neutrophil_de_sva <- all_pairwise(persistence_neutrophil, filter = TRUE,
                                              parallel = parallel, model_batch = "svaseq",
                                              methods = methods)
## 
## N Y 
## 3 7
persistence_neutrophil_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 Y_vs_N
## limma_vs_deseq  0.9407
## limma_vs_edger  0.9408
## limma_vs_ebseq  0.7776
## limma_vs_basic  0.8808
## limma_vs_noiseq 0.8296
## limma_vs_dream  0.9858
## deseq_vs_edger  0.9985
## deseq_vs_ebseq  0.7485
## deseq_vs_basic  0.8270
## deseq_vs_noiseq 0.8211
## deseq_vs_dream  0.9564
## edger_vs_ebseq  0.7601
## edger_vs_basic  0.8283
## edger_vs_noiseq 0.8250
## edger_vs_dream  0.9558
## ebseq_vs_basic  0.9144
## ebseq_vs_noiseq 0.9725
## ebseq_vs_dream  0.7597
## basic_vs_noiseq 0.9393
## basic_vs_dream  0.8581
## noiseq_vs_dream 0.8212
persistence_neutrophil_table_sva <- combine_de_tables(
  persistence_neutrophil_de_sva, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Persistence/persistence_neutrophil_de_sva-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
persistence_neutrophil_table_sva
## A set of combined differential expression results.
##    table deseq_sigup deseq_sigdown edger_sigup edger_sigdown limma_sigup
## 1 Y_vs_N          26            49          17            35           0
##   limma_sigdown
## 1             0
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

## There are insufficient samples (1) in the 'N' category.
##persistence_eosinophil_de_sva <- all_pairwise(persistence_eosinophil, filter = TRUE,
##                                              parallel = parallel, model_batch = "svaseq",
##                                              methods = methods)
##persistence_eosinophil_de_sva
##persistence_eosinophil_table_sva <- combine_de_tables(
##  persistence_eosinophil_de_sva,
##  excel = glue("{xlsx_prefix}/DE_Persistence/persistence_eosinophil_de_sva-v{ver}.xlsx"))

19 Comparing visits without regard to cure/fail

In the following, I am hoping to lower variance associated with factors other than visit via sva and therefore be able to see what genes are changing for everyone with respect to time.

This is the one instance where I think it would be really nice to have biopsy samples for all three visits; I presume that we would have a really nice signal of stuff like keratin and other wound-healing associated genes.

19.1 All cell types

t_visit_all_de_sva <- all_pairwise(t_visit, filter = TRUE, methods = methods,
                                   parallel = parallel, model_batch = "svaseq")
## 
##  3  2  1 
## 34 35 40
t_visit_all_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
t_visit_all_table_sva <- combine_de_tables(
  t_visit_all_de_sva, keepers = visit_contrasts, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Visits/t_all_visit_table_sva-v{ver}.xlsx"))
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
t_visit_all_table_sva
## A set of combined differential expression results.
##      table deseq_sigup deseq_sigdown edger_sigup edger_sigdown limma_sigup
## 1 c2_vs_c1          25             9          20            10          19
## 2 c3_vs_c1          20            20          18            16          21
## 3 c3_vs_c2           0             2           0             2           0
##   limma_sigdown
## 1             7
## 2             7
## 3             0
## Plot describing unique/shared genes in a differential expression table.

t_visit_all_sig_sva <- extract_significant_genes(
  t_visit_all_table_sva,
  excel = glue("{xlsx_prefix}/DE_Visits/t_all_visit_sig_sva-v{ver}.xlsx"))
t_visit_all_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##      limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## v2v1       19          7       20         10       25          9        0
## v3v1       21          7       18         16       20         20        0
## v3v2        0          0        0          2        0          2        0
##      ebseq_down basic_up basic_down
## v2v1          0        0          0
## v3v1          0        0          0
## v3v2          0        0          0

19.2 Monocyte samples

t_visit_monocytes <- set_expt_conditions(t_monocytes, fact = "visitnumber")
## The numbers of samples by condition are:
## 
##  3  2  1 
## 13 13 16
t_visit_monocyte_de_sva <- all_pairwise(t_visit_monocytes, filter = TRUE,
                                        parallel = parallel, model_batch = "svaseq",
                                        methods = methods)
## 
##  3  2  1 
## 13 13 16
t_visit_monocyte_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
t_visit_monocyte_table_sva <- combine_de_tables(
  t_visit_monocyte_de_sva, keepers = visit_contrasts, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Visits/Monocytes/t_monocyte_visit_table_sva-v{ver}.xlsx"))
t_visit_monocyte_table_sva
## A set of combined differential expression results.
##      table deseq_sigup deseq_sigdown edger_sigup edger_sigdown limma_sigup
## 1 c2_vs_c1           1             2           1             1           0
## 2 c3_vs_c1           2             1           1             1           0
## 3 c3_vs_c2           0             0           0             0           0
##   limma_sigdown
## 1             0
## 2             0
## 3             0
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

t_visit_monocyte_sig_sva <- extract_significant_genes(
  t_visit_monocyte_table_sva,
  excel = glue("{xlsx_prefix}/DE_Visits/Monocytes/t_monocyte_visit_sig_sva-v{ver}.xlsx"))
t_visit_monocyte_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##      limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## v2v1        0          0        1          1        1          2        0
## v3v1        0          0        1          1        2          1        0
## v3v2        0          0        0          0        0          0        0
##      ebseq_down basic_up basic_down
## v2v1          1        0          0
## v3v1          0        0          0
## v3v2          1        0          0

19.3 Neutrophil samples

t_visit_neutrophils <- set_expt_conditions(t_neutrophils, fact = "visitnumber")
## The numbers of samples by condition are:
## 
##  3  2  1 
## 12 13 16
t_visit_neutrophil_de_sva <- all_pairwise(t_visit_neutrophils, filter = TRUE,
                                          parallel = parallel, model_batch = "svaseq",
                                          methods = methods)
## 
##  3  2  1 
## 12 13 16
t_visit_neutrophil_de_sva
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
t_visit_neutrophil_table_sva <- combine_de_tables(
  t_visit_neutrophil_de_sva, keepers = visit_contrasts, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Visits/Neutrophils/t_neutrophil_visit_table_sva-v{ver}.xlsx"))
t_visit_neutrophil_table_sva
## A set of combined differential expression results.
##      table deseq_sigup deseq_sigdown edger_sigup edger_sigdown limma_sigup
## 1 c2_vs_c1         111            88         111            88         116
## 2 c3_vs_c1         127            45         122            44          93
## 3 c3_vs_c2           1             0           0             0           0
##   limma_sigdown
## 1            52
## 2            67
## 3             0
## Plot describing unique/shared genes in a differential expression table.

t_visit_neutrophil_sig_sva <- extract_significant_genes(
  t_visit_neutrophil_table_sva,
  excel = glue("{xlsx_prefix}/DE_Visits/Neutrophils/t_neutrophil_visit_sig_sva-v{ver}.xlsx"))
t_visit_neutrophil_sig_sva
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##      limma_up limma_down edger_up edger_down deseq_up deseq_down ebseq_up
## v2v1      116         52      111         88      111         88       64
## v3v1       93         67      122         44      127         45       36
## v3v2        0          0        0          0        1          0        1
##      ebseq_down basic_up basic_down
## v2v1         20      335        288
## v3v1          7      149        113
## v3v2          0        0          1

19.4 Eosinophil samples

t_visit_eosinophils <- set_expt_conditions(t_eosinophils, fact="visitnumber")

t_visit_eosinophil_de <- all_pairwise(t_visit_eosinophils, filter = TRUE,
                                      parallel = parallel, model_batch = "svaseq",
                                      methods = methods)
t_visit_eosinophil_de
t_visit_eosinophil_table <- combine_de_tables(
  t_visit_eosinophil_de, keepers = visit_contrasts, scale_p = TRUE
  excel = glue("{xlsx_prefix}/DE_Visits/Eosinophils/t_eosinophil_visit_table_sva-v{ver}.xlsx"))
t_visit_eosinophil_table
t_visit_eosinophil_sig <- extract_significant_genes(
  t_visit_eosinophil_table,
  excel = glue("{xlsx_prefix}/DE_Visits/Eosinophils/t_eosinophil_visit_sig_sva-v{ver}.xlsx"))
## No significant genes observed.
## Error: <text>:9:3: unexpected symbol
## 8:   t_visit_eosinophil_de, keepers = visit_contrasts, scale_p = TRUE
## 9:   excel
##      ^

20 Explore ROC

Alejandro showed some ROC curves for eosinophil data showing sensitivity vs. specificity of a couple genes which were observed in v1 eosinophils vs. all-times eosinophils across cure/fail. I am curious to better understand how this was done and what utility it might have in other contexts.

To that end, I want to try something similar myself. In order to properly perform the analysis with these various tools, I need to reconfigure the data in a pretty specific format:

  1. Single df with 1 row per set of observations (sample in this case I think)
  2. The outcome column(s) need to be 1 (or more?) metadata factor(s) (cure/fail or a paste0 of relevant queries (eo_v1_cure, eo_v123_cure, etc)
  3. The predictor column(s) are the measurements (rpkm of 1 or more genes), 1 column each gene.

If I intend to use this for our tx data, I will likely need a utility function to create the properly formatted input df.

For the purposes of my playing, I will choose three genes from the eosinophil C/F table, one which is significant, one which is not, and an arbitrary.

The input genes will therefore be chosen from the data structure: t_cf_eosinophil_table_sva:

ENSG00000198178, ENSG00000179344, ENSG00000182628

eo_rpkm <- normalize_expt(tv1_eosinophils, convert = "rpkm", column = "cds_length")
## There appear to be 5355 genes without a length.

21 An external dataset

This paper is DOI:10.1126/scitranslmed.aax4204

Variable gene expression and parasite load predict treatment outcome in cutaneous leishmaniasis.

One query from Maria Adelaida is to see how this data fits with ours. I have read this paper a couple of times now and I get confused on a couple of points every time, which I will explain in a moment. The expermental design is key to my confusion and key to what I think is being missed in our interpretation of the results:

  1. The PCA is not cure vs. fail but healthy skin vs. CL lesion. It should be said that the text makes this perfectly clear, but I can never seem to remember that when I go to look at the data; presumably because I am thinking primarily about cure/fail.

21.1 Only the Scott data

external_norm <- normalize_expt(external_cf, filter = TRUE, norm = "quant",
                                convert = "cpm", transform = "log2")
## Removing 7327 low-count genes (14154 remaining).
plot_pca(external_norm)
## The result of performing a fast_svd dimension reduction.
## The x-axis is PC1 and the y-axis is PC2
## Colors are defined by cure, failure
## Shapes are defined by female, male.

external_nb <- normalize_expt(external_cf, filter = TRUE, batch = "svaseq",
                                convert = "cpm", transform = "log2")
## Removing 7327 low-count genes (14154 remaining).
## Setting 171 low elements to zero.
## transform_counts: Found 171 values equal to 0, adding 1 to the matrix.
plot_pca(external_nb)
## The result of performing a fast_svd dimension reduction.
## The x-axis is PC1 and the y-axis is PC2
## Colors are defined by cure, failure
## Shapes are defined by female, male.

external_de <- all_pairwise(external_cf, filter = TRUE, methods = methods,
                            parallel = parallel, model_batch = "svaseq")
## 
##    cure failure 
##      14       7
external_de
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 falr_vs_cr
## limma_vs_deseq      0.8487
## limma_vs_edger      0.8497
## limma_vs_ebseq      0.3577
## limma_vs_basic      0.4180
## limma_vs_noiseq     0.3627
## limma_vs_dream      0.9654
## deseq_vs_edger      0.9997
## deseq_vs_ebseq      0.4149
## deseq_vs_basic      0.3908
## deseq_vs_noiseq     0.4412
## deseq_vs_dream      0.8718
## edger_vs_ebseq      0.4177
## edger_vs_basic      0.3914
## edger_vs_noiseq     0.4418
## edger_vs_dream      0.8727
## ebseq_vs_basic      0.9027
## ebseq_vs_noiseq     0.9407
## ebseq_vs_dream      0.4304
## basic_vs_noiseq     0.9604
## basic_vs_dream      0.4488
## noiseq_vs_dream     0.4269
external_table <- combine_de_tables(
  external_de, scale_p = TRUE,
  excel = "excel/scott_table.xlsx")
external_table
## A set of combined differential expression results.
##             table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 failure_vs_cure           0             0           0             0
##   limma_sigup limma_sigdown
## 1           0             0
## Only  has information, cannot create an UpSet.
## Plot describing unique/shared genes in a differential expression table.
## NULL
external_sig <- extract_significant_genes(external_table, excel = "excel/scott_sig.xlsx")
external_sig
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##                 limma_up limma_down edger_up edger_down deseq_up deseq_down
## failure_vs_cure        0          0        0          0        0          0
##                 ebseq_up ebseq_down basic_up basic_down
## failure_vs_cure        0          0        0          0
external_top100 <- extract_significant_genes(external_table, n = 100)
external_up <- external_top100[["deseq"]][["ups"]][["failure_vs_cure"]]
external_down <- external_top100[["deseq"]][["downs"]][["failure_vs_cure"]]

21.2 An explicit comparison of methods.

I think I am getting a significantly different result from Scott, so I am going to do an explicit side-by-side comparison of our results at each step. In order to do this, I am using the capsule they kindly provided with their publication.

I am copy/pasting material from their publication with some modification which I will note as I go.

Here is their block ‘r packages’

Note/Spoiler alert: It actually turns out our results are basically relatively similar, I just didn’t understand what comparisons are actually in paper vs those I have primary interest. In addition, we handled gene IDs differently (gene card vs. EnsemblID) which has a surprisingly big effect.

Oh, I just realized that when I did these analyses, I did them in a completely separate tree and compared the results post-facto. This assumption remains in this document and therefore is unlikely to work properly in the containerized environment I am attempting to create. Given that the primary goal of this section is to show to myself that I compared the two datasets as thoroughly as I could, perhaps I should just disable them for the container and allow the reader to perform the exercise de-novo.

library(tidyverse)
library(ggthemes)
library(reshape2)
library(edgeR)
library(patchwork)
library(vegan)
library(DT)
library(tximport)
library(gplots)
library(FinCal)
library(ggrepel)
library(gt)
library(ggExtra)
library(EnsDb.Hsapiens.v86)
library(stringr)
library(cowplot)
library(ggpubr)

I have a separate tree in which I copied the capsule and data. I performed exactly their steps kallisto quant steps within it and put the output data into the same place within it. I did change the commands slightly because I downloaded the files from SRA and so don’t have them with names like ‘host_CL01’, but instead ‘PRJNA…’. But the samples are in the same order, so I sent the output files to the same final filenames. Here is an example from the first sample:

cd preprocessing
module add kallisto
kallisto index -i Homo_sapiens.GRCh38.cdna.all.Index Homo_sapiens.GRCh38.cdna.all.fa
# Map reads to the indexed reference transcriptome for HOST
# first the healthy subjects (HS)
export LESS = '--buffers 0 -B'
kallisto quant -i Homo_sapiens.GRCh38.cdna.all.Index -o host_HS01 -t 24 -b 60 \
         --single -l 250 -s 30 <(less SRR8668755/*-trimmed.fastq.xz) 2>host_HS01.log 1>&2 &

21.3 Block ‘sample_info’

I am going to change the path very slightly in the following block simply because I put the capsule in a separate directory and do not want to copy it here. Otherwise it is unmodified. Also, the function gt::tab_header() annoys the crap out of me.

import <- read_tsv("../scott_2019/capsule-6534016/data/studydesign.txt")
import %>% dplyr::filter(disease == "cutaneous") %>%
  dplyr::select(-2) %>%  gt() %>%
  tab_header(title = md("Clinical metadata from patients with cutaneous leishmaniasis (CL)"),
             subtitle = md("`(n=21)`")) %>%  cols_align(align = "center", columns = TRUE)
targets.lesion <- import
targets.onlypatients <- targets.lesion[8:28,] # only CL lesions (n=21)

# Making factors that will be used for pairwise comparisons:
# HS vs. CL lesions as a factor:
disease.lesion <- factor(targets.lesion$disease)
# Cure vs. Failure lesions as a factor:
treatment.lesion <- factor(targets.onlypatients$treatment_outcome)

21.4 Importing the data and annotations

They did use a slightly different annotation set, Ensembl revision 86. Once again I am modifying the paths slightly to reflect where I put the capsule.

# capturing Ensembl transcript IDs (tx) and gene symbols ("gene_name") from
# EnsDb.Hsapiens.v86 annotation package
Tx <- as.data.frame(transcripts(EnsDb.Hsapiens.v86,
                                columns=c(listColumns(EnsDb.Hsapiens.v86, "tx"),
                                          "gene_name")))

Tx <- dplyr::rename(Tx, target_id = tx_id)
row.names(Tx) <- NULL
Tx <- Tx[,c(6,12)]

# getting file paths for Kallisto outputs
paths.all <- file.path("../scott_2019/capsule-6534016/data/readMapping/human", targets.lesion$sample, "abundance.h5")
paths.patients <- file.path("../scott_2019/capsule-6534016/data/readMapping/human", targets.onlypatients$sample, "abundance.h5")

# importing .h5 Kallisto data and collapsing transcript-level data to genes
Txi.lesion.coding <- tximport(paths.all,
                              type = "kallisto",
                              tx2gene = Tx,
                              txOut = FALSE,
                              ignoreTxVersion = TRUE,
                              countsFromAbundance = "lengthScaledTPM")

# importing againg, but this time just the CL patients
Txi.lesion.coding.onlypatients <- tximport(paths.patients,
                                           type = "kallisto",
                                           tx2gene = Tx,
                                           txOut = FALSE,
                                           ignoreTxVersion = TRUE,
                                           countsFromAbundance = "lengthScaledTPM")

21.5 Filtering and normalization

The block ‘visualizationDatasets’ follows unchanged. In the next block I will add another plot or perhaps 2

# First make a DGEList from the counts:
Txi.lesion.coding.DGEList <- DGEList(Txi.lesion.coding$counts)
colnames(Txi.lesion.coding.DGEList$counts) <- targets.lesion$sample
colnames(Txi.lesion.coding$counts) <- targets.lesion$sample

Txi.lesion.coding.DGEList.OP <- DGEList(Txi.lesion.coding.onlypatients$counts)
colnames(Txi.lesion.coding.DGEList.OP) <- targets.onlypatients$sample

# Convert to counts per million:
Txi.lesion.coding.DGEList.cpm <- edgeR::cpm(Txi.lesion.coding.DGEList, log = TRUE)
Txi.lesion.coding.DGEList.OP.cpm <- edgeR::cpm(Txi.lesion.coding.DGEList.OP, log = TRUE)

keepers.coding <- rowSums(Txi.lesion.coding.DGEList.cpm>1)>=7
keepers.coding.OP <- rowSums(Txi.lesion.coding.DGEList.OP.cpm>1)>=7

Txi.lesion.coding.DGEList.filtered <- Txi.lesion.coding.DGEList[keepers.coding,]
Txi.lesion.coding.DGEList.OP.filtered <- Txi.lesion.coding.DGEList.OP[keepers.coding.OP,]

# convert back to cpm:
Txi.lesion.coding.DGEList.LogCPM.filtered <- edgeR::cpm(Txi.lesion.coding.DGEList.filtered,
                                                        log=TRUE)
Txi.lesion.coding.DGEList.LogCPM.OP.filtered <- edgeR::cpm(Txi.lesion.coding.DGEList.OP.filtered,
                                                           log=TRUE)

# Normalizing data:
calcNorm1 <- calcNormFactors(Txi.lesion.coding.DGEList.filtered, method = "TMM")
calcNorm2 <- calcNormFactors(Txi.lesion.coding.DGEList.OP.filtered, method = "TMM")

Txi.lesion.coding.DGEList.LogCPM.filtered.norm <- edgeR::cpm(calcNorm1, log=TRUE)
colnames(Txi.lesion.coding.DGEList.LogCPM.filtered.norm) <- targets.lesion$sample
Txi.lesion.coding.DGEList.OP.LogCPM.filtered.norm <- edgeR::cpm(calcNorm2, log=TRUE)
colnames(Txi.lesion.coding.DGEList.OP.LogCPM.filtered.norm) <- targets.onlypatients$sample
# Raw dataset:
V1 <- as.data.frame(Txi.lesion.coding.DGEList.cpm)
colnames(V1) <- targets.lesion$sample
V1 <- melt(V1)
colnames(V1) <- c("sample","expression")

# Filtered dataset:
V1.1 <- as.data.frame(Txi.lesion.coding.DGEList.LogCPM.filtered)
colnames(V1.1) <- targets.lesion$sample
V1.1 <- melt(V1.1)
colnames(V1.1) <- c("sample","expression")

# Filtered-normalized dataset:
V1.1.1 <- as.data.frame(Txi.lesion.coding.DGEList.LogCPM.filtered.norm)
colnames(V1.1.1) <- targets.lesion$sample
V1.1.1 <- melt(V1.1.1)
colnames(V1.1.1) <- c("sample","expression")

# plotting:
ggplot(V1, aes(x=sample, y=expression, fill=sample)) +
  geom_violin(trim = TRUE, show.legend = TRUE) +
  stat_summary(fun.y = "median", geom = "point", shape = 95, size = 10, color = "black") +
  theme_bw() +
  theme(legend.position = "none", axis.title=element_text(size=7),
        axis.title.x=element_blank(), axis.text=element_text(size=5),
        axis.text.x = element_text(angle = 90, hjust = 1),
        plot.title = element_text(size = 7)) +
  ggtitle("Raw dataset") +
  ggplot(V1.1, aes(x=sample, y=expression, fill=sample)) +
  geom_violin(trim = TRUE, show.legend = TRUE) +
  stat_summary(fun.y = "median", geom = "point", shape = 95, size = 10, color = "black") +
  theme_bw() +
  theme(legend.position = "none", axis.title=element_text(size=7),
        axis.title.x=element_blank(), axis.text=element_text(size=5),
        axis.text.x = element_text(angle = 90, hjust = 1),
        plot.title = element_text(size = 7)) +
  ggtitle("Filtered dataset") +
  ggplot(V1.1.1, aes(x=sample, y=expression, fill=sample)) +
  geom_violin(trim = TRUE, show.legend = TRUE) +
  stat_summary(fun.y = "median", geom = "point", shape = 95, size = 10, color = "black") +
  theme_bw() +
  theme(legend.position = "none", axis.title=element_text(size=7),
        axis.title.x=element_blank(), axis.text=element_text(size=5),
        axis.text.x = element_text(angle = 90, hjust = 1),
        plot.title = element_text(size = 7)) +
  ggtitle("Filtered and normalized dataset")

21.6 The unfiltered data

The following block in their dataset recreated the matrix without filtering and will use that for differential expression. It is a little hard to follow for me because they subset based on the sample numbers (8 to 28, which if I am not mistaken just drops the healthy samples).

DataNotFiltered_Norm_OP <- calcNormFactors(Txi.lesion.coding.DGEList[,8:28],
                                           method = "TMM")
DataNotFiltered_Norm_log2CPM_OP <- edgeR::cpm(DataNotFiltered_Norm_OP, log=TRUE)
colnames(DataNotFiltered_Norm_log2CPM_OP) <- targets.onlypatients$sample
CPM_normData_notfiltered_OP <- 2^(DataNotFiltered_Norm_log2CPM_OP)
#uncomment the next line to produce raw data that was uploaded to the Gene Expression Omnibus (GEO) for publication.
#write.table(Txi.lesion.coding$counts, file = "Amorim_GEO_raw.txt", sep = "\t", quote = FALSE)

# Including all the individuals (HS and CL patients) for public domain submission:
DataNotFiltered_Norm <- calcNormFactors(Txi.lesion.coding.DGEList, method = "TMM")
DataNotFiltered_Norm_log2CPM <- edgeR::cpm(DataNotFiltered_Norm, log=TRUE)
colnames(DataNotFiltered_Norm_log2CPM) <- targets.lesion$sample
CPM_normData_notfiltered <- 2^(DataNotFiltered_Norm_log2CPM)
#uncomment the next line to produce the normalized data file that was uploaded to the Gene Expression Omnibus (GEO) for publication.
#write.table(DataNotFiltered_Norm_log2CPM, "Amorim_GEO_normalized.txt", sep = "\t", quote = FALSE)

21.7 The scott exploratory analysis

The following block generated a couple of the figures in the paper and comprise a pretty straightforward PCA. I am going to make a following block containing the same image with the cure/fail visualization using the same method/data.

pca.res <- prcomp(t(Txi.lesion.coding.DGEList.LogCPM.filtered.norm), scale.=F, retx=T)
pc.var <- pca.res$sdev^2
pc.per <- round(pc.var/sum(pc.var)*100, 1)
data.frame <- as.data.frame(pca.res$x)

# Calculate distance between samples by permanova:
allsamples.dist <- vegdist(t(2^Txi.lesion.coding.DGEList.LogCPM.filtered.norm),
                           method = "bray")

vegan <- adonis2(allsamples.dist~targets.lesion$disease,
                 data=targets.lesion,
                 permutations = 999, method="bray")

targets.lesion$disease
ggplot(data.frame, aes(x=PC1, y=PC2, color=factor(targets.lesion$disease))) +
  geom_point(size=5, shape=20) +
  theme_calc() +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        axis.text.x = element_text(size = 15, vjust = 0.5),
        axis.text.y = element_text(size = 15), axis.title = element_text(size = 15),
        legend.position="none") +
  scale_color_manual(values = c("#073F80","#EB512C")) +
  annotate("text", x=-50, y=80, label=paste("Permanova Pr(>F) =",
                                            vegan[1,5]), size=3, fontface="bold") +
  xlab(paste("PC1 -",pc.per[1],"%")) +
  ylab(paste("PC2 -",pc.per[2],"%")) +
  xlim(-200,110)

21.7.1 My most similar pca

I just realized that somewhere along the way in creating this container, I messed up this analysis pretty badly:

  1. I dropped the 7 control samples.
  2. I am comparing cure/fail but these analyses are all control/cutaneous.

When I originally did this on my workstation I had an actual 1:1 comparison and saw that our results were quite similar. I need to bring that back into this in order to show that neither we nor they are crazy people.

Either way, I think the main takeaway is that their dataset does not spend much time looking at cure/fail but instead control/infected for a reason.

Note, the fun aspects of the experiment (time to cure, size of lesion, etc) are not annotated in the metadata provided by SRA, but instead may be found in the capsule kindly provided by the lab. As a result, I copied that file into the sample_sheets/ directory and have added it to the expressionset. There is an important caveat, though: I did not include the non-diseased samples for this comparison; as a result the disease metadata factor is boring (e.g. it is only cutaneous).

external_cf[["accession"]] <- pData(external_cf)[["sample"]]
disease_factor <- pData(external_cf)[["disease"]]
table(disease_factor)
## disease_factor
## cutaneous 
##        21
external_disease <- set_expt_conditions(external_cf, fact = disease_factor)
## The numbers of samples by condition are:
## 
## cutaneous 
##        21
external_l2cpm <- normalize_expt(external_cf, filter = TRUE,
                                convert = "cpm", transform = "log2")
## Removing 7327 low-count genes (14154 remaining).
## transform_counts: Found 165 values equal to 0, adding 1 to the matrix.
plot_pca(external_l2cpm, plot_labels = "repel")
## The result of performing a fast_svd dimension reduction.
## The x-axis is PC1 and the y-axis is PC2
## Colors are defined by cure, failure
## Shapes are defined by female, male.

Use the following block if you wish to bring together SRA-downloaded data with the experimental design from the Scott paper. It requires running the blocks above in which I loaded the capsule-derived metadata.

test <- pData(external_cf)
test_import <- as.data.frame(import)
test_import[["accession"]] <- pData(external_cf[["accession"]])
test_merged <- merge(test, import, by = "accession")

This is real comparison point to their cure/fail analysis.

21.8 Cure/Fail PCA using the same prcomp result

I am just copy/pasting their code again, but changing the color factor so that cure is purple, failure is red, and na(uninfected) is black.

The following plot should be the first direct comparison point between the two analysis pipelines. Thus, if you look back a few block at my invocation of plot_pca(external_norm), you will see a green/orange plot which is functionally identical if you note:

  1. The x and y axes are flipped, which ok whatever it is PCA.
  2. I excluded the healthy samples.
  3. I dropped to gene level and used hisat.

With those caveats in mind, it is trivial to find the same relationshipes in the samples. E.g. the bottom red/purple individual samples are in the same relative position as my top orange/green pair. the same 4 samples are relative x-axis outliers (my right green, their left purple). The last 6 samples (my orange, their red) are all in the relative orientation.

I think I can further prove the similarity of our inputs via a direct comparison of the datastructures: Txi.lesion.coding.DGEList.LogCPM.filtered.norm (ugh what a name) vs. external_cf. In order to make that comparison, I need to rename my rows to the genecard IDs and the columns.

their_norm_exprs <- Txi.lesion.coding.DGEList.LogCPM.filtered.norm

my_hgnc_ids <- make.names(fData(external_cf)[["hgnc_symbol"]], unique = TRUE)
my_renamed <- set_expt_genenames(external_cf, ids = my_hgnc_ids)
my_norm <- normalize_expt(my_renamed, filter = TRUE, transform = "log2", convert = "cpm")
my_norm_exprs <- as.data.frame(exprs(my_norm))

our_exprs <- merge(their_norm_exprs, my_norm_exprs, by = "row.names")
rownames(our_exprs) <- our_exprs[["Row.names"]]
our_exprs[["Row.names"]] <- NULL
dim(our_exprs)

## I fully expected a correlation heatmap of the combined
## data to show a set of paired samples across the board.
## That is absolutely not true.
correlations <- plot_corheat(our_exprs)
correlations[["scatter"]]
correlations[["plot"]]
color_fact <- factor(targets.lesion$treatment_outcome)
levels(color_fact)
## Added by atb to see cure/fail on the same dataset
ggplot(data.frame, aes(x=PC1, y=PC2, color=color_fact)) +
  geom_point(size=5, shape=20) +
  theme_calc() +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        axis.text.x = element_text(size = 15, vjust = 0.5),
        axis.text.y = element_text(size = 15), axis.title = element_text(size = 15),
        legend.position="none") +
  scale_color_manual(values = c("purple", "red","black")) +
  annotate("text", x=-50, y=80, label=paste("Permanova Pr(>F) =",
                                            vegan[1,5]), size=3, fontface="bold") +
  xlab(paste("PC1 -",pc.per[1],"%")) +
  ylab(paste("PC2 -",pc.per[2],"%")) +
  xlim(-200,110)

21.9 DE comparisons

The following is their comparison of healthy tissue vs. CL lesion and Failure vs. Cure. I am going to follow it with my analagous examination using limma. Note, each of the pairs of variables created in the following block is xxx followed by xxx.treat; the former is healthy vs lesion and the latter is the fail vs cure set.

# Model matrices:
# CL lesions vs. HS:
design.lesion <- model.matrix(~0 + disease.lesion)
colnames(design.lesion) <- levels(disease.lesion)

# Failure vs. Cure:
design.lesion.treatment <- model.matrix(~0 + treatment.lesion)
colnames(design.lesion.treatment) <- levels(treatment.lesion)

myDGEList.lesion.coding <- DGEList(calcNorm1$counts)
myDGEList.OP.NotFil <- DGEList(CPM_normData_notfiltered_OP)

# Model mean-variance trend and fit linear model to data.
# Use VOOM function from Limma package to model the mean-variance relationship
normData.lesion.coding <- voom(myDGEList.lesion.coding, design.lesion)
normData.OP.NotFil <- voom(myDGEList.OP.NotFil, design.lesion.treatment)

colnames(normData.lesion.coding) <- targets.lesion$sample
colnames(normData.OP.NotFil) <- targets.onlypatients$sample

# fit a linear model to your data
fit.lesion.coding <- lmFit(normData.lesion.coding, design.lesion)
fit.lesion.coding.treatment <- lmFit(normData.OP.NotFil, design.lesion.treatment)

# contrast matrix
contrast.matrix.lesion <- makeContrasts(CL.vs.CON = cutaneous - control,
                                        levels=design.lesion)
contrast.matrix.lesion.treat <- makeContrasts(failure.vs.cure = failure - cure,
                                              levels=design.lesion.treatment)

# extract the linear model fit
fits.lesion.coding <- contrasts.fit(fit.lesion.coding,
                                    contrast.matrix.lesion)
fits.lesion.coding.treat <- contrasts.fit(fit.lesion.coding.treatment,
                                          contrast.matrix.lesion.treat)

# get bayesian stats for your linear model fit
ebFit.lesion.coding <- eBayes(fits.lesion.coding)
ebFit.lesion.coding.treat <- eBayes(fits.lesion.coding.treat)

# TopTable ----
allHits.lesion.coding <- topTable(ebFit.lesion.coding,
                                  adjust ="BH", coef=1,
                                  number=34935, sort.by="logFC")
allHits.lesion.coding.treat <- topTable(ebFit.lesion.coding.treat,
                                        adjust ="BH", coef=1,
                                        number=34776, sort.by="logFC")
myTopHits <- rownames_to_column(allHits.lesion.coding, "geneID")
myTopHits.treat <- rownames_to_column(allHits.lesion.coding.treat, "geneID")

# mutate the format of numeric values:
myTopHits <- mutate(myTopHits, log10Pval = round(-log10(adj.P.Val),2),
                    adj.P.Val = round(adj.P.Val, 2),
                    B = round(B, 2),
                    AveExpr = round(AveExpr, 2),
                    t = round(t, 2),
                    logFC = round(logFC, 2),
                    geneID = geneID)

myTopHits.treat <- mutate(myTopHits.treat, log10Pval = round(-log10(adj.P.Val),2),
                          adj.P.Val = round(adj.P.Val, 2),
                          B = round(B, 2),
                          AveExpr = round(AveExpr, 2),
                          t = round(t, 2),
                          logFC = round(logFC, 2),
                          geneID = geneID)
#save(myTopHits, file = "myTopHits")
#save(myTopHits.treat, file = "myTopHits.treat")

21.10 Perform my analagous limma analysis

my_filt <- normalize_expt(my_renamed, filter = "simple")
limma_cf <- limma_pairwise(my_filt, model_batch = FALSE)

my_table <- limma_cf[["all_tables"]][["failure_vs_cure"]]
their_table <- myTopHits.treat

dim(my_table)
dim(myTopHits.treat)
our_table <- merge(my_table, myTopHits.treat, by.x = "row.names", by.y = "geneID")
dim(our_table)
comparison <- plot_linear_scatter(our_table[, c("logFC.x", "logFC.y")])
comparison$scatter
comparison$correlation
comparison$lm_model

Ok, so there is a constituitive difference in our results, and it is significant. What does that mean for the set of genes observed?

With that said, in my most recent manual run of this, the results are quite good, I got a 0.75 correlation; I bet the primary outliers (on the axes) are just genes for which we got different gene<->tx mappings due to me using hisat and their usage of kallisto.

I guess I can test this hypothesis by just swapping in their counts into my data structure.

test_counts <- as.data.frame(myDGEList.lesion.coding[["counts"]])
test_counts[["host_HS01"]] <- NULL
test_counts[["host_HS02"]] <- NULL
test_counts[["host_HS03"]] <- NULL
test_counts[["host_HS04"]] <- NULL
test_counts[["host_HS05"]] <- NULL
test_counts[["host_HS06"]] <- NULL
test_counts[["host_HS07"]] <- NULL

dim(test_counts)
dim(exprs(my_test))
## Oh, that surprises me, the kallisto data has ~ 6k fewer genes?

21.11 See if there are shared DE genes

!!NOTE!! I am using a non-adjusted p-value filter here because I want to use the same filter they used for the volcano plot.

my_filter <- abs(my_table[["logFC"]]) > 1.0 & my_table[["P.Value"]] <= 0.05
sum(my_filter)
their_filter <- abs(their_table[["logFC"]]) > 1.0 & their_table[["P.Value"]] <= 0.05
sum(their_filter)

my_shared <- rownames(my_table)[my_filter] %in% their_table[their_filter, "geneID"]
sum(my_shared)

shared <- rownames(my_table)[my_filter]
shared[my_shared]

both <- list(
  "us" = rownames(my_table)[my_filter],
  "them" = their_table[their_filter, "geneID"])
tt <- UpSetR::fromList(both)
UpSetR::upset(tt)

21.12 Compare the two datasets directly

only_tmrc3 <- subset_expt(tmrc3_external, subset = "condition=='Colombia'") %>%
  set_expt_conditions(fact = "finaloutcome")
## subset_expt(): There were 39, now there are 18 samples.
## The numbers of samples by condition are:
## 
## failure    cure 
##       5      13
only_tmrc3_de <- all_pairwise(only_tmrc3, model_batch = "svaseq",
                              parallel = parallel, filter = TRUE,
                              methods = methods)
## 
## failure    cure 
##       5      13
only_tmrc3_de
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 falr_vs_cr
## limma_vs_deseq      0.7154
## limma_vs_edger      0.8311
## limma_vs_ebseq      0.7494
## limma_vs_basic      0.9061
## limma_vs_noiseq     0.8629
## limma_vs_dream      0.9890
## deseq_vs_edger      0.9247
## deseq_vs_ebseq      0.8921
## deseq_vs_basic      0.7781
## deseq_vs_noiseq     0.7816
## deseq_vs_dream      0.7191
## edger_vs_ebseq      0.9223
## edger_vs_basic      0.8963
## edger_vs_noiseq     0.8987
## edger_vs_dream      0.8361
## ebseq_vs_basic      0.7965
## ebseq_vs_noiseq     0.8417
## ebseq_vs_dream      0.7621
## basic_vs_noiseq     0.9366
## basic_vs_dream      0.9001
## noiseq_vs_dream     0.8748
only_tmrc3_table <- combine_de_tables(only_tmrc3_de, scale_p = TRUE)
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
only_tmrc3_table
## A set of combined differential expression results.
##             table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 failure_vs_cure          27            26          28            15
##   limma_sigup limma_sigdown
## 1           1             0
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

only_tmrc3_top100 <- extract_significant_genes(only_tmrc3_table, n = 100)
only_tmrc3_up <- only_tmrc3_top100[["deseq"]][["ups"]][["failure_vs_cure"]]
only_tmrc3_down <- only_tmrc3_top100[["deseq"]][["downs"]][["failure_vs_cure"]]

tmrc3_external_de <- all_pairwise(tmrc3_external, model_batch = "svaseq",
                                  parallel = parallel, filter = "simple",
                                  methods = methods)
## 
##   Brazil Colombia 
##       21       18
tmrc3_external_table <- combine_de_tables(
  tmrc3_external_de, scale_p = TRUE,
  excel = "excel/tmrc3_scott_biopsies.xlsx")
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
## Error : colNames must be a unique vector (case sensitive)
tmrc3_external_sig <- extract_significant_genes(
  tmrc3_external_table, excel = "excel/tmrc3_scott_biopsies_sig.xlsx")

tmrc3_external_cf <- set_expt_conditions(tmrc3_external, fact = "finaloutcome")
## The numbers of samples by condition are:
## 
## failure    cure 
##      12      27
tmrc3_external_cf <-  set_expt_batches(tmrc3_external_cf, fact = "lab")
## The number of samples by batch are:
## 
##   Brazil Colombia 
##       21       18
tmrc3_external_cf_norm <- normalize_expt(tmrc3_external_cf, filter = TRUE,
                                         norm = "quant", convert = "cpm", transform = "log2")
## Removing 6904 low-count genes (14577 remaining).
## transform_counts: Found 18 values equal to 0, adding 1 to the matrix.
plot_pca(tmrc3_external_cf_norm)
## The result of performing a fast_svd dimension reduction.
## The x-axis is PC1 and the y-axis is PC2
## Colors are defined by failure, cure
## Shapes are defined by Brazil, Colombia.

tmrc3_external_cf_nb <- normalize_expt(tmrc3_external_cf, filter = TRUE,
                                       batch = "svaseq", convert = "cpm", transform = "log2")
## Removing 6904 low-count genes (14577 remaining).
## Setting 1515 low elements to zero.
## transform_counts: Found 1515 values equal to 0, adding 1 to the matrix.
plot_pca(tmrc3_external_cf_nb)
## The result of performing a fast_svd dimension reduction.
## The x-axis is PC1 and the y-axis is PC2
## Colors are defined by failure, cure
## Shapes are defined by Brazil, Colombia.

tmrc3_external_cf_de <- all_pairwise(tmrc3_external_cf, model_batch = "svaseq",
                                     parallel = parallel, filter = TRUE,
                                     methods = methods)
## 
## failure    cure 
##      12      27
tmrc3_external_cf_de
## A pairwise differential expression with results from: basic, deseq, ebseq, edger, limma, noiseq.
## This used a surrogate/batch estimate from: svaseq.
## The primary analysis performed 21 comparisons.
## The logFC agreement among the methods follows:
##                 falr_vs_cr
## limma_vs_deseq      0.7961
## limma_vs_edger      0.8568
## limma_vs_ebseq      0.7869
## limma_vs_basic      0.9167
## limma_vs_noiseq     0.8497
## limma_vs_dream      0.9769
## deseq_vs_edger      0.9500
## deseq_vs_ebseq      0.9092
## deseq_vs_basic      0.7725
## deseq_vs_noiseq     0.8259
## deseq_vs_dream      0.8238
## edger_vs_ebseq      0.9177
## edger_vs_basic      0.8165
## edger_vs_noiseq     0.8677
## edger_vs_dream      0.8854
## ebseq_vs_basic      0.8250
## ebseq_vs_noiseq     0.9009
## ebseq_vs_dream      0.8159
## basic_vs_noiseq     0.9416
## basic_vs_dream      0.9080
## noiseq_vs_dream     0.8648
tmrc3_external_cf_table <- combine_de_tables(
  tmrc3_external_cf_de, scale_p = TRUE,
  excel = "excel/tmrc3_scott_cf_table.xlsx")
## Could not create a linear model of the data.
## Going to perform a scatter plot without linear model.
## Error : colNames must be a unique vector (case sensitive)
tmrc3_external_cf_table
## A set of combined differential expression results.
##             table deseq_sigup deseq_sigdown edger_sigup edger_sigdown
## 1 failure_vs_cure          37           127          38            91
##   limma_sigup limma_sigdown
## 1           7             0
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## Plot describing unique/shared genes in a differential expression table.

tmrc3_external_cf_sig <- extract_significant_genes(
  tmrc3_external_cf_table, excel = "excel/tmrc3_scott_cf_sig.xlsx")
tmrc3_external_cf_sig
## A set of genes deemed significant according to limma, edger, deseq, ebseq, basic.
## The parameters defining significant were:
## LFC cutoff: 1 adj P cutoff: 0.05
##                 limma_up limma_down edger_up edger_down deseq_up deseq_down
## failure_vs_cure        7          0       38         91       37        127
##                 ebseq_up ebseq_down basic_up basic_down
## failure_vs_cure        3          6        0          0

tmrc3_external_species <- set_expt_conditions(tmrc3_external, fact = "ParasiteSpecies") %>%
  set_expt_colors(color_choices[["parasite"]])
## The numbers of samples by condition are:
## 
## lvbraziliensis   lvpanamensis  notapplicable 
##             22             14              3
## Warning in set_expt_colors(., color_choices[["parasite"]]): Colors for the
## following categories are not being used: lvguyanensis.

21.13 Compare the l2FC values

Let us look at the top/bottom 100 genes of these two datasets and see if they have any similarities.

Note to self, set up s4 dispatch on compare_de_tables!

compared <- compare_de_tables(only_tmrc3_table, external_table, first_table = 1, second_table = 1)
compared$scatter
## Error in `ggplot2::geom_point()` at hpgltools/R/plot_point.R:328:5:
## ! Problem while setting up geom aesthetics.
## i Error occurred in the 8th layer.
## Caused by error in `check_aesthetics()` at ggplot2/R/geom-.R:176:5:
## ! Aesthetics must be either length 1 or the same as the data (13242).
## x Fix the following mappings: `colour`.
compared$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[[xcol]] and df[[ycol]]
## t = 14, df = 13240, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1033 0.1368
## sample estimates:
##    cor 
## 0.1201

22 Compare visits by celltype and C/F

I assume this request came out of the review process, but I am not quite sure where to put it. If I understand it correctly, the goal is to look across visits for combinations of cure and fail (not fail/cure, but v2/v1) and across cell types.

Thus, in order to do this, I will need to combine those three parameters or set up a more complex model to handle this.

t_cellvisitcf <- set_expt_conditions(t_clinical_nobiop, fact = "cell_visit_cf")
## The numbers of samples by condition are:
## 
##    eosinophils_1_cure eosinophils_1_failure    eosinophils_2_cure 
##                     5                     3                     6 
## eosinophils_2_failure    eosinophils_3_cure eosinophils_3_failure 
##                     3                     6                     3 
##      monocytes_1_cure   monocytes_1_failure      monocytes_2_cure 
##                     8                     8                     7 
##   monocytes_2_failure      monocytes_3_cure   monocytes_3_failure 
##                     6                     6                     7 
##    neutrophils_1_cure neutrophils_1_failure    neutrophils_2_cure 
##                     8                     8                     7 
## neutrophils_2_failure    neutrophils_3_cure neutrophils_3_failure 
##                     6                     5                     7
t_cellvisitcf_de <- all_pairwise(t_cellvisitcf, keepers = visittype_contrasts,
                                 model_batch = "svaseq", filter = TRUE, parallel = parallel,
                                 methods = methods)
## 
##    eosinophils_1_cure eosinophils_1_failure    eosinophils_2_cure 
##                     5                     3                     6 
## eosinophils_2_failure    eosinophils_3_cure eosinophils_3_failure 
##                     3                     6                     3 
##      monocytes_1_cure   monocytes_1_failure      monocytes_2_cure 
##                     8                     8                     7 
##   monocytes_2_failure      monocytes_3_cure   monocytes_3_failure 
##                     6                     6                     7 
##    neutrophils_1_cure neutrophils_1_failure    neutrophils_2_cure 
##                     8                     8                     7 
## neutrophils_2_failure    neutrophils_3_cure neutrophils_3_failure 
##                     6                     5                     7
## Error in checkForRemoteErrors(val): one node produced an error: c("Error in `[[<-.data.frame`(`*tmp*`, \"ebseq_mean\", value = c(2159.35148825583,  : \n  replacement has 11910 rows, data has 11901\n", "ebseq")
t_cellvisitcf_de
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_de' not found
t_cellvisitcf_mono_table <- combine_de_tables(
  t_cellvisitcf_de, keepers = visittype_contrasts_mono, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Visits/Cure_Fail/monocyte_visit_cf_combined_table_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_de' not found
t_cellvisitcf_mono_table
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_mono_table' not found
t_cellvisitcf_mono_sig <- extract_significant_genes(
  t_cellvisitcf_mono_table,
  excel = glue("{xlsx_prefix}/DE_Visits/Cure_Fail/monocyte_visit_cf_combined_sig_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_mono_table' not found
t_cellvisitcf_mono_sig
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_mono_sig' not found
t_cellvisitcf_neut_table <- combine_de_tables(
  t_cellvisitcf_de, keepers = visittype_contrasts_ne, scale_p = TRUE,
  excel = glue("{xlsx_prefix}/DE_Visits/Cure_Fail/neutrophil_visit_cf_combined_table_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_de' not found
t_cellvisitcf_neut_table
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_neut_table' not found
t_cellvisitcf_neut_sig <- extract_significant_genes(
  t_cellvisitcf_neut_table,
  excel = glue("{xlsx_prefix}/DE_Visits/Cure_Fail/neutrophil_visit_cf_combined_sig_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_neut_table' not found
t_cellvisitcf_neut_sig
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_neut_sig' not found
t_cellvisitcf_eo_table <- combine_de_tables(
  t_cellvisitcf_de, keepers = visittype_contrasts_eo,
  excel = glue("{xlsx_prefix}/DE_Visits/Cure_Fail/eosinophil_visit_cf_combined_table_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_de' not found
t_cellvisitcf_eo_table
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_eo_table' not found
t_cellvisitcf_eo_sig <- extract_significant_genes(
  t_cellvisitcf_eo_table,
  excel = glue("{xlsx_prefix}/DE_Visits/Cure_Fail/eosinophil_visit_cf_combined_sig_sva-v{ver}.xlsx"))
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_eo_table' not found
t_cellvisitcf_eo_sig
## Error in eval(expr, envir, enclos): object 't_cellvisitcf_eo_sig' not found
tmp <- loadme(filename = savefile)

Bibliography

Chung, Matthew, Vincent M. Bruno, David A. Rasko, Christina A. Cuomo, José F. Muñoz, Jonathan Livny, Amol C. Shetty, Anup Mahurkar, and Julie C. Dunning Hotopp. 2021. “Best Practices on the Differential Expression Analysis of Multi-Species RNA-seq.” Genome Biology 22 (April): 121. https://doi.org/10.1186/s13059-021-02337-8.
Hoffman, Gabriel E, and Panos Roussos. 2020. “Dream: Powerful Differential Expression Analysis for Repeated Measures Designs.” Bioinformatics 37 (2): 192–201. https://doi.org/10.1093/bioinformatics/btaa687.
Leng, Ning, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M. G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. 2013. EBSeq: An Empirical Bayes Hierarchical Model for Inference in RNA-seq Experiments.” Bioinformatics 29 (8): 1035–43. https://doi.org/10.1093/bioinformatics/btt087.
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2.” bioRxiv. https://doi.org/10.1101/002832.
McCarthy, Davis J., Yunshun Chen, and Gordon K. Smyth. 2012. “Differential Expression Analysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation.” Nucleic Acids Research 40 (10): 4288–97. https://doi.org/10.1093/nar/gks042.
Molania, Ramyar, Momeneh Foroutan, Johann A. Gagnon-Bartsch, Luke C. Gandolfo, Aryan Jain, Abhishek Sinha, Gavriel Olshansky, Alexander Dobrovic, Anthony T. Papenfuss, and Terence P. Speed. 2023. “Removing Unwanted Variation from Large-Scale RNA Sequencing Data with PRPS.” Nature Biotechnology 41 (1): 82–95. https://doi.org/10.1038/s41587-022-01440-w.
Risso, Davide, John Ngai, Terence P. Speed, and Sandrine Dudoit. 2014. “Normalization of RNA-seq Data Using Factor Analysis of Control Genes or Samples.” Nature Biotechnology 32 (9): 896–902. https://doi.org/10.1038/nbt.2931.
Ritchie, Matthew E., Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, and Gordon K. Smyth. 2015. “Limma Powers Differential Expression Analyses for RNA-sequencing and Microarray Studies.” Nucleic Acids Research 43 (7): e47–47. https://doi.org/10.1093/nar/gkv007.
Tarazona, Sonia, Pedro Furió-Tarí, David Turrà, Antonio Di Pietro, María José Nueda, Alberto Ferrer, and Ana Conesa. 2015. “Data Quality Aware Analysis of Differential Expression in RNA-seq with NOISeq R/Bioc Package.” Nucleic Acids Research 43 (21): e140. https://doi.org/10.1093/nar/gkv711.
LS0tCnRpdGxlOiAiVE1SQzMgYHIgU3lzLmdldGVudignVkVSU0lPTicpYDogRGlmZmVyZW50aWFsIEV4cHJlc3Npb24gYW5hbHlzZXMsIFR1bWFjbyBvbmx5LiIKYXV0aG9yOiAiYXRiIGFiZWxld0BnbWFpbC5jb20iCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKYmlibGlvZ3JhcGh5OiBhdGIuYmliCnJ1bnRpbWU6IHNoaW55Cm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgY29kZV9kb3dubG9hZDogdHJ1ZQogICAgY29kZV9mb2xkaW5nOiBzaG93CiAgICBmaWdfY2FwdGlvbjogdHJ1ZQogICAgZmlnX2hlaWdodDogNwogICAgZmlnX3dpZHRoOiA3CiAgICBoaWdobGlnaHQ6IHplbmJ1cm4KICAgIGtlZXBfbWQ6IGZhbHNlCiAgICBtb2RlOiBzZWxmY29udGFpbmVkCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIHNlbGZfY29udGFpbmVkOiB0cnVlCiAgICB0aGVtZTogcmVhZGFibGUKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OgogICAgICBjb2xsYXBzZWQ6IGZhbHNlCiAgICAgIHNtb290aF9zY3JvbGw6IGZhbHNlCi0tLQoKPHN0eWxlIHR5cGU9InRleHQvY3NzIj4KYm9keSAubWFpbi1jb250YWluZXIgewogIG1heC13aWR0aDogMTYwMHB4Owp9CmJvZHksIHRkIHsKICBmb250LXNpemU6IDE2cHg7Cn0KY29kZS5yIHsKICBmb250LXNpemU6IDE2cHg7Cn0KcHJlIHsKICBmb250LXNpemU6IDE2cHgKfQo8L3N0eWxlPgoKYGBge3Igb3B0aW9ucywgaW5jbHVkZT1GQUxTRX0KbGlicmFyeShocGdsdG9vbHMpCgpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KGVucmljaHBsb3QpCmxpYnJhcnkoZm9yY2F0cykKbGlicmFyeShnbHVlKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkobG1lNCkKCmRldnRvb2xzOjpsb2FkX2FsbCgifi9ocGdsdG9vbHMiKQprbml0cjo6b3B0c19rbml0JHNldChwcm9ncmVzcyA9IFRSVUUsIHZlcmJvc2UgPSBUUlVFLCB3aWR0aCA9IDkwLCBlY2hvID0gVFJVRSkKa25pdHI6Om9wdHNfY2h1bmskc2V0KAogIGVycm9yID0gVFJVRSwgZmlnLndpZHRoID0gOCwgZmlnLmhlaWdodCA9IDgsIGZpZy5yZXRpbmEgPSAyLAogIG91dC53aWR0aCA9ICIxMDAlIiwgZGV2ID0gInBuZyIsCiAgZGV2LmFyZ3MgPSBsaXN0KHBuZyA9IGxpc3QodHlwZSA9ICJjYWlyby1wbmciKSkpCm9sZF9vcHRpb25zIDwtIG9wdGlvbnMoZGlnaXRzID0gNCwgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFLCBrbml0ci5kdXBsaWNhdGUubGFiZWwgPSAiYWxsb3ciKQpnZ3Bsb3QyOjp0aGVtZV9zZXQoZ2dwbG90Mjo6dGhlbWVfYncoYmFzZV9zaXplID0gMTIpKQp2ZXIgPC0gU3lzLmdldGVudigiVkVSU0lPTiIpCnBhcmFsbGVsIDwtIHRvdXBwZXIoU3lzLmdldGVudigiUEFSQUxMRUwiKSkKaWYgKHBhcmFsbGVsID09ICIiIHx8IHBhcmFsbGVsID09ICJUUlVFIikgewogIHBhcmFsbGVsIDwtIFRSVUUKfSBlbHNlIHsKICBwYXJhbGxlbCA8LSBGQUxTRQp9CnJ1bmRhdGUgPC0gZm9ybWF0KFN5cy5EYXRlKCksIGZvcm1hdCA9ICIlWSVtJWQiKQoKcm1kX2ZpbGUgPC0gZ2x1ZSgiMDRkaWZmZXJlbnRpYWxfZXhwcmVzc2lvbl90dW1hY28uUm1kIikKc2F2ZWZpbGUgPC0gZ3N1YihwYXR0ZXJuID0gIlxcLlJtZCIsIHJlcGxhY2UgPSAiXFwucmRhXFwueHoiLCB4ID0gcm1kX2ZpbGUpCmxvYWRlZCA8LSBsb2FkKGZpbGUgPSBnbHVlKCJyZGEvdG1yYzNfZGF0YV9zdHJ1Y3R1cmVzLXZ7dmVyfS5yZGEiKSkKeGxzeF9wcmVmaXggPC0gImFuYWx5c2VzLzRfdHVtYWNvIgpjZl9wcmVmaXggPC0gZ2x1ZSgie3hsc3hfcHJlZml4fS9ERV9DdXJlX0ZhaWwiKQpgYGAKCiMgQ2hhbmdlbG9nCgoqIDIwMjQxMjogUmVvcmdhbml6aW5nIHRoZSBsbWUgd29yawoqIDIwMjQxMTogV29ya2luZyBvbiB0aGUgYWRkaXRpb24gb2YgbGluZWFyIG1peGVkIG1vZGVscy4KKiAyMDI0MDY6IEFkZGVkIGFuIGV4cGxpY2l0IGNvbXBhcmlzb24gb2YgZGlmZmVyZW50IG1vZGVsCiAgY29uc3RydWN0aW9ucyB1c2luZyBvdXIgbW9zdCB2YXJpYWJsZSBjZWxsIHR5cGUsIHRoZSBuZXV0cm9waGlscy4KKiAyMDI0MDY6IFdvcmtpbmcgZW50aXJlbHkgb3V0IG9mIHRoZSBjb250YWluZXIgbm93LCBzZXBhcmF0ZWQKICBHU0UvR1NFQSBhbmFseXNlcywgYWRkZWQgYSBmdWxsIHRyZWF0bWVudCB3aXRoIGNsdXN0ZXJQcm9maWxlcjsgSSBhbQogIG5vdCBjdXJyZW50bHkgd3JpdGluZyB0aGUgY3AgcmVzdWx0cyBvdXQgYXMgeGxzeCBmaWxlcyB1bnRpbC91bmxlc3MKICBzb21lb25lIGV4cHJlc3NlcyBpbnRlcmVzdCBpbiB0aGVtLgoqIDIwMjMwOTogRGlzYWJsZWQgR1NWQSBhbmFseXNlcyB1bnRpbC91bmxlc3Mgd2UgZ2V0IHBlcm1pc3Npb24gdG8KICBpbmNsdWRlIHRoZSBtU2lnREIgNy41LjEgcmVsZWFzZSAod2hhdCBJIHVzZWQpLiAgSSB3aWxsIHNpbXBsaWZ5IHRoZQogIGZpbGVuYW1lcyBzbyB0aGF0IG9uZSBtYXkgZWFzaWx5IGRyb3AgaW4gYSBkb3dubG9hZGVkIGNvcHkgb2YgdGhlCiAgZGF0YSBhbmQgcnVuIGhvc2UgYmxvY2tzLiAgVW50aWwgdGhlbiwgSSBndWVzcyB5b3UgKGZpY3RpdGlvdXMKICByZWFkZXIpIHdpbGwgaGF2ZSB0byB0cnVzdCBtZSB3aGVuIEkgc2F5IHRob3NlIGJsb2NrcyBhbGwgd29yaz8KICAoQWxzbywgR1NWQSB3YXMgbW92ZWQgdG8gYSBzZXBhcmF0ZSBkb2N1bWVudCkKKiAyMDIzMDk6IE1vdmVkIGFsbCBnZW5lIHNldCBlbnJpY2htZW50IGFuYWx5c2VzIHRvIDA0bHJ0X2dzZWFfZ3N2YS5SbWQKKiAyMDIzMDkgbmV4dCBkYXk6IE1vdmluZyBnZW5lIHNldCBlbnJpY2htZW50IGJhY2sgYmVjYXVzZSBpdCBhZGRzIHRvbyBtdWNoCiAgY29tcGxleGl0eSB0byBzYXZlL3JlbG9hZCB0aGUgREUgcmVzdWx0cyBmb3IgZ1Byb2ZpbGVyIGFuZCBmcmllbmRzLgoqIFN0aWxsIGh1bnRpbmcgZm9yIG1lc3NlZCB1cCBjb2xvcnMsIGNoYW5nZWQgaW5wdXQgZGF0YSB0byBtYXRjaCBuZXcgdmVyc2lvbi4KCiMgTm90ZXMvVE9ET3MgZm9yIDIwMjQxMisKCiogV2hhdCBkbyB3ZSB0aGluayBhYm91dCBkcmVhbSdzIGFkanVzdGVkIHAtdmFsdWUgcmVzdWx0cz8KKiBDcmVhdGUgdGFibGVzIG9mIHRoZSBtbG0gcmVzdWx0cyBhcyB4bHN4IGZpbGVzLCBkbyBub3QgYm90aGVyCiAgcHVsbGluZyB0aGVtIGludG8gdGhlIHRhYmxlcyB3aXRoIGRlc2VxIGV0Yy4KICAqKiA1IHRhYmxlczogbW9ub2N5dGUsIG5ldXRyb3BoaWwsIGVvc2lub3BoaWwsIGFsbCwgYWxsK3N2YQoqIENyZWF0ZSBzY2F0dGVyIHBsb3RzIHNob3dpbmcgc2ltaWxhcml0aWVzIGJldHdlZW4gcC12YWx1ZXMgcGVyaGFwcwogIGFuZCB6LXNjb3JlcywgYW5kIGxvZ0ZDLgoqIFBlcmZvcm0gR08gZXRjIHdpdGggbWxtIHJlc3VsdHMuCgojIEludHJvZHVjdGlvbgoKVGhlIHZhcmlvdXMgZGlmZmVyZW50aWFsIGV4cHJlc3Npb24gYW5hbHlzZXMgb2YgdGhlIGRhdGEgZ2VuZXJhdGVkIGluCnRtcmMzX2RhdGFzZXRzIHdpbGwgb2NjdXIgaW4gdGhpcyBkb2N1bWVudC4gIE1vc3Qgb2YgdGhlIGFjdHVhbCB3b3JrCmlzIHZpYSB0aGUgZnVuY3Rpb24gJ2FsbF9wYWlyd2lzZSgpJzsgdGhlIHdvcmQgJ2FsbCcgaW4gdGhlIG5hbWUgZG9lcwphIGxvdCBvZiB3b3JrOyBpdCBpcyByZXNwb25zaWJsZSBmb3IgcGVyZm9ybWluZyBhbGwgcG9zc2libGUgcGFpcndpc2UKY29udHJhc3RzIHVzaW5nIGFsbCBwb3NzaWJsZSBtZXRob2RzIGZvciB3aGljaCBJIGhhdmUgc3VmZmljaWVudAp1bmRlcnN0YW5kaW5nIHRvIGJlIGFibGUgdG8gd3JpdGUgYSByZWFzb25hYmx5IHJvYnVzdCBwYWlyd2lzZQpmdW5jdGlvbi4gIEN1cnJlbnRseSB0aGlzIGlzIGxpbWl0ZWQgdG86CgoqIERFU2VxMiAoQGxvdmVNb2RlcmF0ZWRFc3RpbWF0aW9uRm9sZDIwMTQpOiAgT3VyICdkZWZhdWx0JwoqIGVkZ2VSIChAbWNjYXJ0aHlEaWZmZXJlbnRpYWxFeHByZXNzaW9uQW5hbHlzaXMyMDEyKTogIHNoYXJlcyBhCiAgY2xvc2UgY29uY2VwdHVhbCBsaW5lYWdlIHdpdGggREVTZXEyIEkgdGhpbmsuCiogbGltbWEgKEByaXRjaGllTGltbWFQb3dlcnNEaWZmZXJlbnRpYWwyMDE1YSk6ICBhbG9uZyB3aXRoIHZvb20gdGhpcwogIHByb3ZpZGVzIGEgbmljZWx5IHJvYnVzdCBzZXQgb2YgdG9vbHMuCiogRUJzZXEgKEBsZW5nRUJTZXFFbXBpcmljYWxCYXllczIwMTMpOiAgSSB0aGluayBpdCBpcyBub3QgYXMgcm9idXN0IGFzCiAgdGhlIHByZXZpb3VzIGVudHJpZXMsIGJ1dCBJIGxpa2UgdXNpbmcgaXQgYmVjYXVzZSBpdCBpcyBhbiBhbG1vc3QKICBwdXJlbHkgYmF5ZXNpYW4gbWV0aG9kIGFuZCBhcyBzdWNoIHByb3ZpZGVzIGEgZGlmZmVyZW50IHBlcnNwZWN0aXZlCiAgb24gYW55IGRhdGFzZXQuCiogTm9pc2VxIChAdGFyYXpvbmFEYXRhUXVhbGl0eUF3YXJlMjAxNSk6ICBJIG5vdGljZWQgdGhpcyBtZXRob2QKICByZWxhdGl2ZWx5IHJlY2VudGx5IGFuZCB3YXMgc3VmZmljaWVudGx5IGludHJpZ3VlZCB0aGF0IEkgdGhyZXcgYQogIG1ldGhvZCB0b2dldGhlciB1c2luZyBpdC4gIFRoZSBhdXRob3JzIGFwcGVhciB0byBtZSB0byBiZSBsb29raW5nIHRvCiAgdW5kZXJzdGFuZCBhIGxvdCBvZiB0aGUgcXVlc3Rpb25zIG9uIHdoaWNoIEkgc3BlbmQgYSBsb3Qgb2YgdGltZS4KKiBEcmVhbSAoQGhvZmZtYW5EcmVhbVBvd2VyZnVsRGlmZmVyZW50aWFsMjAyMCk6IEkgbW9zdGx5IGxpa2UgdGhpcwogIGJlY2F1c2UgaXQgdXNlcyB2YXJpYW5jZVBhcnRpdGlvbiwgd2hpY2ggSSB0aGluayBpcyBhIHJlYWxseSBuaWNlCiAgdG95IHdoZW4gdHJ5aW5nIHRvIHVuZGVyc3RhbmQgd2hhdCBpcyBnb2luZyBvbiBpbiBhIGRhdGFzZXQuCiogYmFzaWMgaXMgbXkgb3duLCBleHBsaWNpdGx5IHVuaW5mb3JtZWQgYW5hbHlzaXMuICBJdCBpcyBteQogICduZWdhdGl2ZSBjb250cm9sJyBtZXRob2QgYmVjYXVzZSwgaWYgc29tZXRoaW5nIGFncmVlcyBlbnRpcmVseSB3aXRoCiAgaXQsIHRoZW4gSSBrbm93IHRoYXQgYWxsIHRoZSBmYW5jeSBtYXRoIGFuZCBzdGF0aXN0aWNzIHBlcmZvcm1lZCBieQogIHRoYXQgbWV0aG9kIHdvcmtlZCBvdXQganVzdCB0aGUgc2FtZSBhcyBzb21lIGRvb2Z1cyAobWUpIGp1c3QgbG9nMgogIHN1YnRyYWN0aW5nIHRoZSBleHByZXNzaW9uIHZhbHVlcy4gIEl0IGlzIG5vdCBxdWl0ZSB0aGF0IGJhc2ljLCBidXQKICBwcmV0dHkgY2xvc2UuCgpUaGUgZmlyc3QgMyBtZXRob2RzIGFsbG93IG9uZSB0byBhZGQgc3Vycm9nYXRlIHZhcmlhYmxlIGVzdGltYXRlcyB0bwp0aGUgbW9kZWwgd2hlbiBwZXJmb3JtaW5nIHRoZSBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBhbmFseXNlcy4KTm9pc2VxIGhhbmRsZXMgc3Vycm9nYXRlcyB1c2luZyBpdHMgb3duIGhldXJpc3RpY3MsIEVCU2VxCmlzIGluaW1pY2FibGUgdG8gdGhhdCBraW5kIG9mIG1vZGVsLCBhbmQgSSBleHBsaWNpdGx5IGNob3NlIHRvIG5vdAptYWtlIHRoYXQgcG9zc2libGUgZm9yIGJhc2ljLiAgSSBhbSB1bmNlcnRhaW4gYXQgdGhpcyB0aW1lIGhvdyB0aGUKcmFuZG9tIGVmZmVjdCBmYWN0b3JzIHVzZWQgd2l0aCBkcmVhbSBpbnRlcmFjdCB3aXRoIHN1cnJvZ2F0ZXMgZnJvbQpzdmEuICBXaXRoIHRoYXQgaW4gbWluZCwgaW4gbW9zdCBpbnN0YW5jZXMgSSB1c3VhbGx5IGRlYWwgd2l0aApzdXJyb2dhdGVzL2JhdGNoZXMgaW4gb25lIG9mIGEgZmV3IHdheXM6CgoxLiAgSWYgdGhlIGRhdGEgaXMgYWJzdXJkbHkgcHJldHR5LCBkbyBub3RoaW5nIChwcmV0dHkgbXVjaAogICAgb25seSBmb3Igd2VsbC1jb250cm9sbGVkIGJhY3RlcmlhbCBkYXRhKS4KMi4gIEFkZCBhIGtub3duIGJhdGNoIGZhY3RvciB0byB0aGUgbW9kZWwgKHRoZSBkZWZhdWx0KS4KMy4gIFRyeSB0byBlbnN1cmUgdGhlIGRhdGEgaXMgc3VpdGFibGUgYW5kIGludm9rZSBzdmEKICAgIChAbGVla1NWQVBhY2thZ2VSZW1vdmluZzIwMTIpIHRvIGFjcXVpcmUgZXN0aW1hdGVzIGFuZCBhZGQgdGhlbSB0bwogICAgdGhlIG1vZGVsLgo0LiAgSWYgdGhlIGRhdGEgaGFzIGEga25vd24gYmF0Y2ggZmFjdG9yIGFuZCBpdCBpcyBwYXJ0aWN1bGFybHkKICAgIHBhdGhvbG9naWNhbCwgdXNlIHRoZSBjb21iYXQgaW1wbGVtZW50YXRpb24gaW4gc3ZhLiAgQXMgYSBnZW5lcmFsCiAgICBydWxlIEkgZG8gbm90IGxpa2UgdGhpcyBvcHRpb24gYmVjYXVzZSBpdCBpcyBkYXRhIGRlc3RydWN0aXZlLgoKVGhlIGxhc3QgdHdvIG9wdGlvbnMgYXJlIGhhbmRsZWQgdmlhIGEgZnVuY3Rpb24gbmFtZWQgJ2FsbF9hZGp1c3RlcnMnCmluIGhwZ2x0b29scyB3aGljaCBpcyByZXNwb25zaWJsZSBmb3IgZW5zdXJpbmcgdGhhdCB0aGUgZGF0YSBpcyBzYW5lCmZvciB0aGUgYXNzdW1wdGlvbnMgbWFkZSBieSBlYWNoIG1ldGhvZCBhbmQgaW52b2tlcyBlYWNoIG1ldGhvZAooaG9wZWZ1bGx5KSBwcm9wZXJseS4gIEl0IHJldHVybnMgYm90aCBtb2RpZmllZCBjb3VudHMgYW5kIG1vZGVsCmVzdGltYXRlcyB3aGVuIHBvc3NpYmxlIGFuZCBoYXMgaW1wbGVtZW50YXRpb25zIGZvciBhIGZhaXIgbnVtYmVyIG9mCm1ldGhvZHMgaW4gdGhpcyByZWFsbS4gIHN2YSBpcyBteSBmYXZvcml0ZSBieSBhIHByZXR0eSBiaWcgbWFyZ2luLAp0aG91Z2ggSSBkbyBzb21ldGltZXMgdXNlIFJVViAoQHJpc3NvTm9ybWFsaXphdGlvblJOQXNlcURhdGEyMDE0KSBhbmQgb2YKY291cnNlLCBpbiB3cml0aW5nIHRoaXMgZG9jdW1lbnQgSSBzdHVtYmxlZCBpbnRvIGFub3RoZXIgaW50ZXJlc3RpbmcKY29udGVuZGVyOiAoQG1vbGFuaWFSZW1vdmluZ1Vud2FudGVkVmFyaWF0aW9uMjAyMykgIGFsbF9hZGp1c3RlcnMoKQphbHNvIGhhcyBpbXBsZW1lbnRhdGlvbnMgb2YgZXZlcnkgZXhhbXBsZS9tZXRob2QgSSBnb3Qgb3V0IG9mIHRoZQpwYXBlcnMgZm9yIHN2YSAoZS5nLiBzc3ZhL2ZzdmEpLCBpc3ZhLCBzbWFydHN2YSwgYW5kIHNvbWUgb3RoZXJzLgoKSSBoYXZlIGJlZW4gY2hhbmdpbmcgaHBnbHRvb2xzIHNvIHRoYXQgaXQgaXMgbm93IHBvc3NpYmxlIHRvIHRyaXZpYWxseQpwYXNzIGFyYml0cmFyaWx5IGNvbXBsZXggbW9kZWxzIHRvIHRoZSB2YXJpb3VzIG1ldGhvZHM7IHdpdGggdGhlCmNhdmVhdCB0aGF0IHRoZXJlIGlzIG5vIGdvb2Qgd2F5IGN1cnJlbnRseSB0byBtaXggZml4ZWQgZWZmZWN0cyBhbmQKcmFuZG9tIGVmZmVjdHMgYWNyb3NzIG1ldGhvZHM7IHNvIEkgYW0gcnVubmluZyBkcmVhbSBzZXBhcmF0ZWx5IGFuZAphZGRpbmcgaXQgdG8gdGhlIHJlc3VsdCBvZiBhbGxfcGFpcndpc2UgcG9zdC1mYWN0by4KCiMjIERlZmluZSBjb250cmFzdHMgZm9yIERFIGFuYWx5c2VzCgpFYWNoIG9mIHRoZSBmb2xsb3dpbmcgbGlzdHMgZGVzY3JpYmVzIHRoZSBzZXQgb2YgY29udHJhc3RzIHRoYXQgSQp0aGluayBhcmUgaW50ZXJlc3RpbmcgZm9yIHRoZSB2YXJpb3VzIHdheXMgb25lIG1pZ2h0IGNvbnNpZGVyIHRoZQpUTVJDMyBkYXRhc2V0LiAgVGhlIHZhcmlhYmxlcyBhcmUgbmFtZWQgYWNjb3JkaW5nIHRvIHRoZSBhc3N1bWVkIGRhdGEKd2l0aCB3aGljaCB0aGV5IHdpbGwgYmUgdXNlZCwgdGh1cyB0Y19jZl9jb250cmFzdHMgaXMgZXhwZWN0ZWQgdG8gYmUKdXNlZCBmb3IgdGhlIFR1bWFjbytDYWxpIGRhdGEgYW5kIHByb3ZpZGUgYSBzZXJpZXMgb2YgY3VyZS9mYWlsCmNvbXBhcmlzb25zIHdoaWNoICh0byB0aGUgZXh0ZW50IHBvc3NpYmxlKSBhY3Jvc3MgYm90aCBsb2NhdGlvbnMuICBJbgpldmVyeSBjYXNlLCB0aGUgbmFtZSBvZiB0aGUgbGlzdCBlbGVtZW50IHdpbGwgYmUgdXNlZCBhcyB0aGUgY29udHJhc3QKbmFtZSwgYW5kIHdpbGwgdGh1cyBiZSBzZWVuIGFzIHRoZSBzaGVldCBuYW1lIGluIHRoZSBvdXRwdXQgeGxzeApmaWxlKHMpOyB0aGUgdHdvIHBpZWNlcyBvZiB0aGUgY2hhcmFjdGVyIHZlY3RvciB2YWx1ZSBhcmUgdGhlCm51bWVyYXRvciBhbmQgZGVub21pbmF0b3Igb2YgdGhlIGFzc29jaWF0ZWQgY29udHJhc3QuCgoqIE91ciBwcmltYXJ5IHF1ZXN0aW9uOiBmYWlsL2N1cmU6ICBBbnkgZXhjZWwgZmlsZSB3cml0dGVuIHVzaW5nIHRoaXMKY29udHJhc3Qgd2lsbCBnZXQgYSBzaW5nbGUgd29ya3NoZWV0IGNvbXBhcmluZyBmYWlsL2N1cmUuCiogQ29tcGFyZSBmYWlsL2N1cmUgZm9yIGVhY2ggdmlzaXQ6IFRoaXMgdGFrZXMgYSBtb3JlIGdyYW51bGFyIHZpZXcgb2YKdGhlIHByZXZpb3VzIGNvbnRyYXN0LiAgSWYgb25lIGlzIHNvLWluY2xpbmVkLCBvbmUgY291bGQgY29tcGFyZQpyZXN1bHRzIGZyb20gdGhlIGZvbGxvd2luZyBjb250cmFzdCBhZ2FpbnN0IHRoZSBwcmV2aW91cyBhbmQgZm9sbG93aW5nCmNvbnRyYXN0IHRvIGxlYXJuIGFib3V0IHRoZSBkeW5hbWljcyBvZiB0aGUgaGVhbGluZyAob3Igbm90KSBwcm9jZXNzLgoqIEFsbCBzYW1wbGVzIGJ5IHZpc2l0OiBUaGlzIGlzIGVmZmVjdGl2ZWx5IHRoZSBvcHBvc2l0ZSBvZiB0aGUKcHJldmlvdXMgYW5kIGNvbXBhcmVzIGFsbCBzYW1wbGVzIG9mIHZpc2l0IHggYWdhaW5zdCB2aXNpdCB5LgoqIFZpc2l0IDEgdnMgZXZlcnl0aGluZyBlbHNlOiBXaGVuIEkgZmlyc3QgZGlkIHRoZSBwcmV2aW91cyBzZXQgb2YKY29udHJhc3RzIEkgcXVpY2tseSByZWFsaXplZCB0aGF0IHZpc2l0cyAyIGFuZCAzIGFyZSByZWxhdGl2ZWx5CnNpbWlsYXIgYW5kIHRoYXQgaXQgbWF5IGJlIHBvc3NpYmxlIHRvIGdhaW4gYSBsaXR0bGUgcG93ZXIgYW5kIGxlYXJuIGEKbGl0dGxlIG1vcmUgYnkgY29tYmluaW5nIHRoZW0uCiogRGlyZWN0bHkgY29tcGFyZSBjZWxsdHlwZXM6IFdlIGhhdmUgdGhyZWUgY2xpbmljYWwgY2VsbCB0eXBlcyBpbiB0aGUKZGF0YSBhbmQgdGhlIGRpZmZlcmVuY2VzIGFtb25nIHRoZW0gYXJlIHF1aXRlIGludGVyZXN0aW5nLgoqIEV0aG5pY2l0aWVzOiBXZSBhbHNvIGhhdmUgdGhyZWUgZXRobmljIGdyb3VwcyBpbiB0aGUgZGF0YSwgdGhvdWdoCnRoZXJlIGFyZSBzb21lIHdhY2t5IGNvbmZvdW5kZWQgdmFyaWFibGVzIHdoZW4gY29uc2lkZXJpbmcgdGhlbQp0aHJvdWdoIHRoZSBsZW5zZSBvZiBjdXJlL2ZhaWw7IHNvIGFueSByZXN1bHRzIGNvbXBhcmluZyB0aGVtIHNob3VsZApiZSB0cmVhdGVkIHdpdGggY2F1dGlvbi4KKiBQb3dlcmxlc3MgdmlzaXRzK2NlbGx0eXBlK2NmOiBUaGlzIGlzIGEgbGFzdC1taW51dGUgYWRkaXRpb24KcmVxdWVzdGVkIGJ5IE1hcmlhIEFkZWxhaWRhLiAgSSBhc3N1bWUgaXQgd2FzIHN1Z2dlc3RlZCBieSBhIHJldmlld2VyLAp0aG91Z2ggSSBkbyBub3QgcmVjYWxsIHNlZWluZyBhbnl0aGluZyBpbiB0aGUgcmV2aWV3cyB3aGljaCBtYWRlIHRoaXMKcmVxdWVzdC4gIFRoZSBudW1iZXIgb2Ygc2FtcGxlcyB3ZSBoYXZlIGluIHRoZSBkYXRhIGp1c3QgX2JhcmVseV8Kc3VwcG9ydHMgdGhlc2UgY29udHJhc3RzLCBhbmQgZ2l2ZW4gdGhlIHN0cmVuZ3RoIG9mIGFsbCB0aGUgdmFyaW91cwpzdXJyb2dhdGVzLCBJIHdvdWxkIGJlIHNvbWV3aGF0IHJlbHVjdGFudCB0byB0cnVzdCBhbnkgZ2VuZXMgZGVlbWVkIERFCmluIHRoZW0gd2l0aG91dCBzb21lIG90aGVyIGV2aWRlbmNlLiAgSXQgc2hvdWxkIGJlIG5vdGVkIHRoYXQgdGhpcyBpcwp0aGUgaW50ZWxsZWN0dWFsIGNvdW50ZXJwb2ludCB0byB0aGUgY3JpdGlxdWUgZnJvbSBhIGRpZmZlcmVudApyZXZpZXdlciwgdGhhdCBhcnRpZmljYWxseSBtZXJnaW5nIGZhY3RvcnMgbGlrZSB0aGlzIGlzIHByb2JsZW1hdGljIChJCnBlcnNvbmFsbHkgdGVuZCB0byBhZ3JlZSB3aXRoIHRoZSBsYXRlciBhcmd1bWVudCBtb3JlIHRoYW4gdGhlIGZvcm1lcgp3aXRoIHRoZSBjYXZlYXQgdGhhdCB0aGUgYWRkZWQgY29tcGxleGl0eSAod2l0aCByZXNwZWN0IHRvIHdoYXQgaXMKYWN0dWFsbHkgdHlwZWQgYnkgdGhlIHBlcnNvbiAobWUpKSBjYW4gYmUgYSBwcm9ibGVtLiAgVGh1cyBJIHRlbmQgdG8KZG8gdGhlIHRoaW5nIHdoaWNoIGlzIGV4cGxpY2l0bHkgbGVzcyBzdGF0aXN0aWNhbGx5IGNvcnJlY3QgKGJ1dCBJIGNhbgphbHNvIHNob3cgcHJldHR5IGRlZmluaXRpdmVseSB0aGF0IHRoZSByZXN1bHRzIGFyZSB2ZXJ5IG5lYXJseQppZGVudGljYWwpIGluIG9yZGVyIHRvIG1ha2UgaXQgZWFzaWVyIHRvIHNob3cgdGhhdCBubyBtaXN0YWtlcyB3ZXJlCm1hZGUuICBFLmcuIHRlbnNpb24gYmV0d2VlbiAnY29ycmVjdG5lc3MnIGFuZCAncm9idXN0bmVzcycuCgpgYGB7cn0KdF9jZl9jb250cmFzdCA8LSBsaXN0KAogICJvdXRjb21lIiA9IGMoInR1bWFjb19mYWlsdXJlIiwgInR1bWFjb19jdXJlIikpCmNmX2NvbnRyYXN0IDwtIGxpc3QoCiAgIm91dGNvbWUiID0gYygiZmFpbHVyZSIsICJjdXJlIikpCnZpc2l0Y2ZfY29udHJhc3RzIDwtIGxpc3QoCiAgInYxY2YiID0gYygidjFfZmFpbHVyZSIsICJ2MV9jdXJlIiksCiAgInYyY2YiID0gYygidjJfZmFpbHVyZSIsICJ2Ml9jdXJlIiksCiAgInYzY2YiID0gYygidjNfZmFpbHVyZSIsICJ2M19jdXJlIikpCnZpc2l0X2NvbnRyYXN0cyA8LSBsaXN0KAogICJ2MnYxIiA9IGMoImMyIiwgImMxIiksCiAgInYzdjEiID0gYygiYzMiLCAiYzEiKSwKICAidjN2MiIgPSBjKCJjMyIsICJjMiIpKQp2aXNpdF92MWxhdGVyIDwtIGxpc3QoCiAgImxhdGVyX3ZzX2ZpcnN0IiA9IGMoImxhdGVyIiwgImZpcnN0IikpCmNlbGx0eXBlcyA8LSBsaXN0KAogICJlb19tb25vIiA9IGMoImVvc2lub3BoaWxzIiwgIm1vbm9jeXRlcyIpLAogICJuZV9tb25vIiA9IGMoIm5ldXRyb3BoaWxzIiwgIm1vbm9jeXRlcyIpLAogICJlb19uZSIgPSBjKCJlb3Npbm9waGlscyIsICJuZXV0cm9waGlscyIpKQpldGhuaWNpdHlfY29udHJhc3RzIDwtIGxpc3QoCiAgIm1lc3Rpem9faW5kaWdlbm91cyIgPSBjKCJtZXN0aXphIiwgImluZGlnZW5hIiksCiAgIm1lc3Rpem9fYWZyb2NvbCIgPSBjKCJtZXN0aXphIiwgImFmcm9jb2wiKSwKICAiaW5kaWdlbm91c19hZnJvY29sIiA9IGMoImluZGlnZW5hIiwgImFmcm9jb2wiKSkKb3V0Y29tZXR5cGVfY29udHJhc3RzIDwtIGxpc3QoCiAgIm1vbm9jeXRlX2NmIiA9IGMoImZhaWx1cmVfbW9ub2N5dGVzIiwgImN1cmVfbW9ub2N5dGVzIiksCiAgIm5ldXRyb3BoaWxfY2YiID0gYygiZmFpbHVyZV9uZXV0cm9waGlscyIsICJjdXJlX25ldXRyb3BoaWxzIiksCiAgImVvc2lub3BoaWxfY2YiID0gYygiZmFpbHVyZV9lb3Npbm9waGlscyIsICJjdXJlX2Vvc2lub3BoaWxzIikpCnZpc2l0dHlwZV9jb250cmFzdHNfbW9ubyA8LSBsaXN0KAogICJ2MnYxX21vbm9fY3VyZSIgPSBjKCJtb25vY3l0ZXNfMl9jdXJlIiwgIm1vbm9jeXRlc18xX2N1cmUiKSwKICAidjJ2MV9tb25vX2ZhaWx1cmUiID0gYygibW9ub2N5dGVzXzJfZmFpbHVyZSIsICJtb25vY3l0ZXNfMV9mYWlsdXJlIiksCiAgInYzdjFfbW9ub19jdXJlIiA9IGMoIm1vbm9jeXRlc18zX2N1cmUiLCAibW9ub2N5dGVzXzFfY3VyZSIpLAogICJ2M3YxX21vbm9fZmFpbHVyZSIgPSBjKCJtb25vY3l0ZXNfM19mYWlsdXJlIiwgIm1vbm9jeXRlc18xX2ZhaWx1cmUiKSkKdmlzaXR0eXBlX2NvbnRyYXN0c19lbyA8LSBsaXN0KAogICJ2MnYxX2VvX2N1cmUiID0gYygiZW9zaW5vcGhpbHNfMl9jdXJlIiwgImVvc2lub3BoaWxzXzFfY3VyZSIpLAogICJ2MnYxX2VvX2ZhaWx1cmUiID0gYygiZW9zaW5vcGhpbHNfMl9mYWlsdXJlIiwgImVvc2lub3BoaWxzXzFfZmFpbHVyZSIpLAogICJ2M3YxX2VvX2N1cmUiID0gYygiZW9zaW5vcGhpbHNfM19jdXJlIiwgImVvc2lub3BoaWxzXzFfY3VyZSIpLAogICJ2M3YxX2VvX2ZhaWx1cmUiID0gYygiZW9zaW5vcGhpbHNfM19mYWlsdXJlIiwgImVvc2lub3BoaWxzXzFfZmFpbHVyZSIpKQp2aXNpdHR5cGVfY29udHJhc3RzX25lIDwtIGxpc3QoCiAgInYydjFfbmVfY3VyZSIgPSBjKCJuZXV0cm9waGlsc18yX2N1cmUiLCAibmV1dHJvcGhpbHNfMV9jdXJlIiksCiAgInYydjFfbmVfZmFpbHVyZSIgPSBjKCJuZXV0cm9waGlsc18yX2ZhaWx1cmUiLCAibmV1dHJvcGhpbHNfMV9mYWlsdXJlIiksCiAgInYzdjFfbmVfY3VyZSIgPSBjKCJuZXV0cm9waGlsc18zX2N1cmUiLCAibmV1dHJvcGhpbHNfMV9jdXJlIiksCiAgInYzdjFfbmVfZmFpbHVyZSIgPSBjKCJuZXV0cm9waGlsc18zX2ZhaWx1cmUiLCAibmV1dHJvcGhpbHNfMV9mYWlsdXJlIikpCnZpc2l0dHlwZV9jb250cmFzdHMgPC0gYyh2aXNpdHR5cGVfY29udHJhc3RzX21vbm8sCiAgICAgICAgICAgICAgICAgICAgICAgICB2aXNpdHR5cGVfY29udHJhc3RzX2VvLAogICAgICAgICAgICAgICAgICAgICAgICAgdmlzaXR0eXBlX2NvbnRyYXN0c19uZSkKYGBgCgojIyBHZW5lIFNldCBFbnJpY2htZW50IC8gb3ZlciByZXByZXNlbnRhdGlvbgoKUHJldmlvdXNseSwgdGhlIG92ZXIgcmVwcmVzZW50YXRpb24gYW5hbHlzZXMgKGUuZy4gR08gYW5kIGZyaWVuZHMpCmZvbGxvd2VkIGVhY2ggREUgYW5hbHlzaXMgZHVyaW5nIHRoaXMgZG9jdW1lbnQuICBJIHJlY2VudGx5IG1lbnRhbGx5CnNldmVyZWQgbXkgY29uY2VwdGlvbiBvZiBHTyBhbmFseXNlcyBpbnRvIHR3byBjYW1wczogb3ZlcgpyZXByZXNlbnRhdGlvbiBhbmFseXNlcyBpbiB3aGljaCBvbmUgcHJvdmlkZXMgYSBncm91cCBvZiBnZW5lcyBkZWVtZWQKc2lnbmlmaWNhbnQgaW4gc29tZSB3YXkgYW5kIGFza3MgaWYgdGhlcmUgYXJlIGtub3duIGNhdGVnb3JpZXMgd2hpY2gKY29udGFpbiB0aGVzZSBnZW5lcyBtb3JlIHRoYW4gb25lIHdvdWxkIGV4cGVjdCBhdCByYW5kb20uICBJbgpjb250cmFzdCwgSSBhbSBkZWZpbmluZyBnZW5lIHNldCBlbnJpY2htZW50IGFuYWx5c2VzIGV4cGxjaXRseSBhcyB0aGUKcHJvY2VzcyBvZiBwYXNzaW5nIGFsbCBnZW5lcyB3aXRoIHRoZWlyIG1ldHJpYyBvZiBjaG9pY2UgKGxvZ0ZDLApleHBycywgd2hhdGV2ZXIpIGFuZCBhc2tpbmcgaWYgdGhlIGRpc3RyaWJ1dGlvbiBvZiBhbGwgZ2VuZXMgaXMKc2lnbmlmaWNhbnQgd2l0aCByZXNwZWN0IHRvIHRoZSBjYXRlZ29yaWVzLgoKV2l0aCB0aGF0IGluIG1pbmQsIEkgYWRkZWQgYSBzZXJpZXMgb2YgZXhwbGljaXRseSBHU0VBIGFuYWx5c2VzIGluIG15CmxhdGVyIGl0ZXJhdGlvbnMgb2YgdGhlc2UgZG9jdW1lbnRzIHNvIHRoYXQgYm90aCB3YXlzIG9mIHRoaW5raW5nIGFyZQpwcm92aWRlZC4KCkhvd2V2ZXIsIEkgbW92ZWQgdGhvc2UgYW5hbHlzZXMgdG8gYSBzZXBhcmF0ZSBkb2N1bWVudAooMDVlbnJpY2htZW50LlJtZCkgaW4gdGhlIGhvcGVzIG9mIGltcHJvdmluZyB0aGVpciBvcmdhbml6YXRpb24uCgojIE9ubHkgVHVtYWNvIHNhbXBsZXMKClN0YXJ0IG92ZXIsIHRoaXMgdGltZSB3aXRoIG9ubHkgdGhlIHNhbXBsZXMgZnJvbSBUdW1hY28uICBXZSBjdXJyZW50bHkKYXJlIGFzc3VtaW5nIHRoZXNlIHdpbGwgcHJvdmUgdG8gYmUgdGhlIG9ubHkgYW5hbHlzZXMgdXNlZCBmb3IgZmluYWwKaW50ZXJwcmV0YXRpb24uICBUaGlzIGlzIHByaW1hcmlseSBiZWNhdXNlIHdlIGhhdmUgaW5zdWZmaWNpZW50CnNhbXBsZXMgd2hpY2ggZmFpbGVkIHRyZWF0bWVudCBmcm9tIENhbGkuICBUaGVyZSBpcyBvbmUgZGlzYWR2YW50YWdlCndoZW4gdXNpbmcgdGhlc2Ugc2FtcGxlczogdGhleSBoYWQgdG8gdHJhdmVsIGZ1cnRoZXIgdGhhbiB0aGUgc2FtcGxlcwp0YWtlbiBpbiBDYWxpIGFuZCB0aGVyZSBpcyBzaWduaWZpY2FudCB2YXJpYW5jZSBvYnNlcnZlZCBiZXR3ZWVuIHRoZQp0d28gbG9jYXRpb25zIGFuZCB3ZSBjYW5ub3QgZGlzY2VybiBpdHMgc291cmNlLiAgSW4gdGhlIHdvcnN0IGNhc2UKc2NlbmFyaW8gKG9uZSB3aGljaCBJIHRoaW5rIHVubGlrZWx5KSwgdGhlIHZhcmlhbmNlIGlzIGNhdXNlZApieSBkZWdyYWRlZCBSTkEgZHVyaW5nIHRyYW5zaXQuICBXZSBkbyBrbm93IHRoYXQgdGhlIHNhbXBsZXMgd2VyZQp3ZWxsLXN0b3JlZCBpbiBSTkFMYXRlciBhbmQgZnJvemVuL2V0Yywgc28gSSBhbSBpbmNsaW5lZCB0byBkaXNjb3VudAp0aGF0IHBvc3NpYmlsaXR5LiAgKEFsc28sIGxvb2tpbmcgYXQgdGhlIHJlYWRzIGluIElHViB0aGV5IGRvbid0Cidsb29rJyBkZWdyZWFkZWQgdG8gbWUuKSAgSSB0aGluayBhIG1vcmUgY29tcGVsbGluZyBkaWZmZXJlbmNlIGxpZXMgaW4KdGhlIGRpZmZlcmVudCBwb3B1bGF0aW9uIGRlbW9ncmFwaGljcyBvYnNlcnZlZCBpbiB0aGUgdHdvIGxvY2F0aW9ucy4KQWN0dWFsbHksIG5vdyB0aGF0IEkgaGF2ZSB0eXBlZCB0aGVzZSBzZW50ZW5jZXMgb3V0LCBJIHRoaW5rIEkgY2FuCnNlbWktdGVzdCB0aGlzIGh5cG90aGVzaXMgYnkgbG9va2luZyBhdCB0aGUgc2V0IG9mIERFIGdlbmVzIGJldHdlZW4KdGhlIHR3byBsb2NhdGlvbnMgYW5kIGNvbXBhcmUgdGhhdCByZXN1bHQgdG8gdGhlIFR1bWFjbyAoYW5kL29yIENhbGkpCmV0aG5pY2l0eSBjb21wYXJpc29uIHdoaWNoIGlzIG1vc3QgcmVwcmVzZW50YXRpdmUgb2YgdGhlIGV0aG5pY2l0eQpkaWZmZXJlbmNlcyBiZXR3ZWVuIHRoZW0uICBJZiBJIGdldCBpdCBpbnRvIG15IGhlYWQgdG8gdHJ5IHRoaXMsIEkKd2lsbCBuZWVkIHRvIGxvYWQgdGhlIERFIHRhYmxlcyBmcm9tIHRoZQowM2RpZmZlcmVudGlhbF9leHByZXNzaW9uX2JvdGguUm1kIGRvY3VtZW50OyBzbyBJIGFtIG1vc3QgbGlrZWx5IHRvCnRyeSBpdCBvdXQgaW4gdGhlIDA3dmFyX2NvZWYgZG9jdW1lbnQsIHdoaWNoIHdhcyBtb3N0bHkgd3JpdHRlbiBieQpUaGVyZXNhIGFuZCBpcyBhbHJlYWR5IGV4YW1pbmluZyBzb21lIHNpbWlsYXIgcXVlc3Rpb25zLgoKIyMgQWxsIHNhbXBsZXMKClN0YXJ0IGJ5IGNvbnNpZGVyaW5nIGFsbCBUdW1hY28gY2VsbCB0eXBlcy4gIE5vdGUgdGhhdCBpbiB0aGlzIGNhc2Ugd2UKb25seSB1c2UgU1ZBLCBwcmltYXJpbHkgYmVjYXVzZSBJIGFtIG5vdCBjZXJ0YWluIHdoYXQgd291bGQgYmUgYW4KYXBwcm9wcmlhdGUgYmF0Y2ggZmFjdG9yLCBwZXJoYXBzIHZpc2l0PwoKYGBge3J9CnRfY2ZfY2xpbmljYWxfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X2NsaW5pY2FsLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZHMgPSBtZXRob2RzKQp0X2NsaW5pY2FsIDwtIHRfY2ZfY2xpbmljYWxfZGVfc3ZhW1siaW5wdXQiXV0KdF9jZl9jbGluaWNhbF9kZV9zdmEKdF9jZl9jbGluaWNhbF90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9jbGluaWNhbF9kZV9zdmEsIGtlZXBlcnMgPSBjZl9jb250cmFzdCwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L0FsbF9TYW1wbGVzL3RfY2xpbmljYWxfY2ZfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfY2xpbmljYWxfdGFibGVfc3ZhCnRfY2ZfY2xpbmljYWxfdGFibGVfc3ZhW1sicGxvdHMiXV1bWyJvdXRjb21lIl1dW1siZGVzZXFfbWFfcGxvdHMiXV0KdF9jZl9jbGluaWNhbF9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9jbGluaWNhbF90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9BbGxfU2FtcGxlcy90X2NsaW5pY2FsX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9jbGluaWNhbF9zaWdfc3ZhCgpkaW0odF9jZl9jbGluaWNhbF9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9jbGluaWNhbF9zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCmBgYAoKUmVwZWF0IHdpdGhvdXQgdGhlIGJpb3BzaWVzLgoKYGBge3J9CnRfY2ZfY2xpbmljYWxuYl9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRfY2xpbmljYWxfbm9iaW9wLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdF9jbGluaWNhbF9ub2Jpb3AgPC0gdF9jZl9jbGluaWNhbG5iX2RlX3N2YVtbImlucHV0Il1dCnRfY2ZfY2xpbmljYWxuYl9kZV9zdmEKdF9jZl9jbGluaWNhbG5iX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX2NsaW5pY2FsbmJfZGVfc3ZhLCBrZWVwZXJzID0gY2ZfY29udHJhc3QsIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vQWxsX1NhbXBsZXMvdF9jbGluaWNhbF9ub2Jpb3BfY2ZfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfY2xpbmljYWxuYl90YWJsZV9zdmEKdF9jZl9jbGluaWNhbG5iX3RhYmxlX3N2YVtbInBsb3RzIl1dW1sib3V0Y29tZSJdXVtbImRlc2VxX21hX3Bsb3RzIl1dCnRfY2ZfY2xpbmljYWxuYl9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9jbGluaWNhbG5iX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L0FsbF9TYW1wbGVzL3RfY2xpbmljYWxfbm9iaW9wX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9jbGluaWNhbG5iX3NpZ19zdmEKCmRpbSh0X2NmX2NsaW5pY2FsbmJfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfY2xpbmljYWxuYl9zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCmBgYAoKQXMgdGhlIGRhdGEgc3RydWN0dXJlJ3MgbmFtZSBzdWdnZXN0cywgdGhlIGFib3ZlIGNvbXBhcmlzb24gc2Vla3MgdG8KbGVhcm4gaWYgdGhlcmUgYXJlIGZhaWwvY3VyZSBkaWZmZXJlbmNlcyBkaXNjZXJuYWJsZSBhY3Jvc3MgYWxsCmNsaW5pY2FsIGNlbGx0eXBlcyBpbiBzYW1wbGVzIHRha2VuIGluIFR1bWFjby4KClRoZSBzZXQgb2Ygc3RlcHMgdGFrZW4gaW4gdGhpcyBwcmV2aW91cyBibG9jayB3aWxsIGJlIGVzc2VudGlhbGx5CnJlcGVhdGVkIGZvciBldmVyeSBzZXQgb2YgY29udHJhc3RzIGFuZCB3YXkgb2YgbWl4aW5nL21hdGNoaW5nIHRoZQpkYXRhIGFuZCBmb2xsb3dzIHRoZSBwYXRoOgoKMS4gIFJ1biBhbGxfcGFpcndpc2UgdG8gcnVuIGRlc2VxIGFuZCBmcmllbmRzIHVzaW5nIHN1cm9nYXRlIGVzdGltYXRlcwogICAgcHJvdmlkZWQgYnkgc3ZhIHdoZW4gYXBwcm9wcmlhdGUvcG9zc2libGUuICBUaGlzIGNyZWF0ZXMgYW4gdW53aWVsZHkKICAgIGRhdGFzdHJ1Y3R1cmUgY29udGFpbmluZyB0aGUgcmVzdWx0cyBmcm9tIGFsbCBtZXRob2RzIGFuZCBhbGwKICAgIGNvbnRyYXN0cyBhcyBhIHNlcmllcyBvZiBuZXN0ZWQgbGlzdHMuCjIuICBNYXNoIHRoZW0gdG9nZXRoZXIgd2l0aCBjb21iaW5lX2RlX3RhYmxlcywgdXNlIHRoZSAna2VlcGVycycKICAgIGFyZ3VtZW50IHRvIGRlZmluZSB0aGUgZGVzaXJlZCBudW1lcmF0b3JzL2Rlbm9taW5hdG9ycywgYW5kIHdyaXRlCiAgICB0aGUgdGFibGVzIHRvIHRoZSBmaWxlIHByb3ZpZGVkIGluIHRoZSAnZXhjZWwnIGFyZ3VtZW50LgozLiAgWWFuayBvdXQgdGhlICdzaWduaWZpY2FudCcgZ2VuZXMgYW5kIHNlbmQgdGhlbSB0byBhIHNlcGFyYXRlIGV4Y2VsCiAgICBkb2N1bWVudC4gIEluIGFsbCBjYXNlcywgJ3NpZ25pZmljYW50JyBpcyB0aGUgc2V0IHdpdGggYSB8bG9nMkZDfAogICAgPj0gMS4wIGFuZCBhZGp1c3RlZCBwLXZhbHVlIDw9IDAuMDUuICBUaGlzIHJlbWluZHMgbWUsIG9uZSBvZiB0aGUKICAgIHJldmlld2VycyBtZW50aW9uZWQgYSBzZXQgb2YgaW50ZXJuYXRpb25hbCBndWlkZWxpbmVzIGZvcgogICAgc2lnbmlmaWNhbnQgZ2VuZXMsIEkgdGhvdWdodCBJIGJhc2ljYWxseSBrbm93IHdoYXQgSSBhbSBkb2luZywgYnV0CiAgICB0aGlzIGNhdWdodCBtZSBjb21wbGV0ZWx5IHVuYXdhcmUuICBJZiBhbnlvbmUgZXZlciByZWFkcyB0aGlzIChubwogICAgb25lIHdpbGwsIGxldCB1cyBiZSBob25lc3QpIEkgd291bGQgbG92ZSB0byBrbm93LiAgVGhlIGNsb3Nlc3QKICAgIHRoaW5nIEkgZm91bmQgaXM6IChAY2h1bmdCZXN0UHJhY3RpY2VzRGlmZmVyZW50aWFsMjAyMSksIGJ1dCBJIGRvCiAgICBub3QgdGhpbmsgaXQgcmVhbGx5IGFkZHJlc3NlcyB0aGlzIGlkZWEgKEkgaGF2ZSBub3QgeWV0IHJlYWQgaXQKICAgIGNhcmVmdWxseSkuCgpUaGVzZSBkYXRhc3RydWN0dXJlcyBhcmUgYWxsIGV4cG9zZWQgdG8gdmFyaW91cyBmdW5jdGlvbnMgaW4gaHBnbHRvb2xzCndoaWNoIGFsbG93IG9uZSB0byBwb2tlL2NvbXBhcmUgdGhlbTsgSSBhbSBub3QgYSBmYW4gb2YgRXhjZWwsIGJ1dCBJCnRoaW5rIHRoZSB4bHN4IGRvY3VtZW50cyBpdCBjcmVhdGVzIGFyZSBwcmV0dHkgZGVjZW50LCB0b28uCgojIFZpc2l0IGNvbXBhcmlzb25zCgpMYXRlciBpbiB0aGlzIGRvY3VtZW50IEkgZG8gYSBidW5jaCBvZiB2aXNpdC9jZiBjb21wYXJpc29ucy4gIEluIHRoaXMKYmxvY2sgSSB3YW50IHRvIGV4cGxpY2l0bHkgb25seSBjb21wYXJlIHYxIHRvIG90aGVyIHZpc2l0cy4gIFRoaXMgaXMKc29tZXRoaW5nIEkgZGlkIHF1aXRlIGEgbG90IGluIHRoZSAyMDE5IGRhdGFzZXRzLCBidXQgbmV2ZXIgYWN0dWFsbHkKbW92ZWQgdG8gdGhpcyBkb2N1bWVudC4KCmBgYHtyfQp0djFfdnNfbGF0ZXIgPC0gYWxsX3BhaXJ3aXNlKHRfdjF2cywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZHMgPSBtZXRob2RzKQp0X3YxdnMgPC0gdHYxX3ZzX2xhdGVyW1siaW5wdXQiXV0KdHYxX3ZzX2xhdGVyCnR2MV92c19sYXRlcl90YWJsZSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0djFfdnNfbGF0ZXIsIGtlZXBlcnMgPSB2aXNpdF92MWxhdGVyLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfVmlzaXRzL3R2MV92c19sYXRlcl90YWJsZXMtdnt2ZXJ9Lnhsc3giKSkKdHYxX3ZzX2xhdGVyX3RhYmxlCnR2MV92c19sYXRlcl9zaWcgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0djFfdnNfbGF0ZXJfdGFibGUsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0RFX1Zpc2l0cy90djFfdnNfbGF0ZXJfc2lnLXZ7dmVyfS54bHN4IikpCnR2MV92c19sYXRlcl9zaWcKYGBgCgojIFNleCBjb21wYXJpc29uCgpUaGVyZSBpcyBhbiBpbXBvcnRhbnQgY2F2ZWF0IHdoZW4gY29uc2lkZXJpbmcgdGhlIHNleCBvZiBwZW9wbGUgaW4gdGhlCnN0dWR5OiB0aGVyZSBhcmUgdmVyeSBmZXcgZmVtYWxlcyB3aG8gZmFpbGVkLiAgQXMgYSByZXN1bHQgSSBwcmltYXJpbHkKY29uY2VybmVkIHdpdGggdGhlIGN1cmUgc2FtcGxlcyBtYWxlL2ZlbWFsZS4KCmBgYHtyfQp0X3NleCA8LSBzdWJzZXRfZXhwdCh0Y19zZXgsIHN1YnNldCA9ICJjbGluaWMgPT0gJ3R1bWFjbyciKQp0X3NleAp0X3NleF9kZSA8LSBhbGxfcGFpcndpc2UodF9zZXgsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsIG1ldGhvZHMgPSBtZXRob2RzLAogICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgZmlsdGVyID0gVFJVRSkKdF9zZXggPC0gdF9zZXhfZGVbWyJpbnB1dCJdXQp0X3NleF9kZQp0X3NleF90YWJsZSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X3NleF9kZSwgc2NhbGVfcCA9IFRSVUUsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0dlbmVfU2V0X0VucmljaG1lbnQvdF9zZXhfdGFibGUtdnt2ZXJ9Lnhsc3giKSkKdF9zZXhfdGFibGUKdF9zZXhfc2lnIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9zZXhfdGFibGUsIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9HZW5lX1NldF9FbnJpY2htZW50L3Rfc2V4X3NpZy12e3Zlcn0ueGxzeCIpKQp0X3NleF9zaWcKYGBgCgpJbiB0aGUgZm9sbG93aW5nIGJsb2NrIEkgcmVtb3ZlZCB0aGUgZmFpbGVkIHBlb3BsZSBzbyB0aGF0IHRoZQpjb21wYXJpc29uIG1ha2VzIGFjdHVhbCBzZW5zZS4KCmBgYHtyfQp0Y19zZXhfY3VyZSA8LSBzdWJzZXRfZXhwdCh0Y19zZXgsIHN1YnNldCA9ICJmaW5hbG91dGNvbWU9PSdjdXJlJyIpCnRfc2V4X2N1cmUgPC0gc3Vic2V0X2V4cHQodGNfc2V4X2N1cmUsIHN1YnNldCA9ICJjbGluaWMgPT0gJ3R1bWFjbyciKQoKdF9zZXhfY3VyZV9kZSA8LSBhbGxfcGFpcndpc2UodF9zZXhfY3VyZSwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRfc2V4X2N1cmUgPC0gdF9zZXhfY3VyZV9kZVtbImlucHV0Il1dCnRfc2V4X2N1cmVfZGUKdF9zZXhfY3VyZV90YWJsZSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X3NleF9jdXJlX2RlLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfU2V4L3Rfc2V4X2N1cmVfdGFibGUtdnt2ZXJ9Lnhsc3giKSkKdF9zZXhfY3VyZV90YWJsZQp0X3NleF9jdXJlX3NpZyA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfc2V4X2N1cmVfdGFibGUsIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9ERV9TZXgvdF9zZXhfY3VyZV9zaWctdnt2ZXJ9Lnhsc3giKSkKdF9zZXhfY3VyZV9zaWcKYGBgCgojIEV0aG5pY2l0eSBjb21wYXJpc29ucwoKSW4gYSBmYXNoaW9uIHNpbWlsYXIgdG8gdGhlIHB1dGF0aXZlIHNleCBjb21wYXJpc29uczsgdGhlcmUgYXJlIGZldy9ubwpmYWlscyBmb3Igb25lIGV0aG5pY2l0eS4gIEluIGFkZGl0aW9uLCB0aGUgb2JzZXJ2ZWQgZXRobmljaXRpZXMgYXJlCnZlcnkgZGlmZmVyZW50IGZvciB0aGUgdHdvIGNsaW5pY3MuICBUaGlzIG1ha2VzIGNvbXBhcmlzb25zIG9mIHRoZQpldGhuaWNpdGllcyB0cmlja3kuCgpgYGB7cn0KdF9ldGhuaWNpdHlfZGUgPC0gYWxsX3BhaXJ3aXNlKHRfZXRuaWFfZXhwdCwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFsbGVsID0gcGFyYWxsZWwsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdF9ldG5pYV9leHB0IDwtIHRfZXRobmljaXR5X2RlW1siaW5wdXQiXV0KdF9ldGhuaWNpdHlfZGUKdF9ldGhuaWNpdHlfdGFibGUgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9ldGhuaWNpdHlfZGUsIGtlZXBlcnMgPSBldGhuaWNpdHlfY29udHJhc3RzLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfRXRobmljaXR5L3RfZXRobmljaXR5X3RhYmxlLXZ7dmVyfS54bHN4IikpCnRfZXRobmljaXR5X3RhYmxlCnRfZXRobmljaXR5X3NpZyA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfZXRobmljaXR5X3RhYmxlLCBhY2NvcmRpbmdfdG8gPSAiZGVzZXEiLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9ERV9FdGhuaWNpdHkvdF9ldGhuaWNpdHlfc2lnLXZ7dmVyfS54bHN4IikpCnRfZXRobmljaXR5X3NpZwpgYGAKCiMgU2VwYXJhdGUgdGhlIFR1bWFjbyBkYXRhIGJ5IHZpc2l0CgpPbmUgb2YgdGhlIG1vc3QgY29tcGVsbGluZyBpZGVhcyBpbiB0aGUgZGF0YSBpcyB0aGUgb3Bwb3J0dW5pdHkgdG8KZmluZCBnZW5lcyBpbiB0aGUgZmlyc3QgdmlzaXQgd2hpY2ggbWF5IGhlbHAgcHJlZGljdCB0aGUgbGlrZWxpaG9vZAp0aGF0IGEgcGVyc29uIHdpbGwgcmVzcG9uZCB3ZWxsIHRvIHRyZWF0bWVudC4gIFRoZSBmb2xsb3dpbmcgYmxvY2sKd2lsbCB0aGVyZWZvcmUgbG9vayBhdCBjdXJlL2ZhaWwgZnJvbSBUdW1hY28gYXQgdmlzaXQgMS4KCiMjIEN1cmUvRmFpbCwgVHVtYWNvIFZpc2l0IDEKCmBgYHtyfQp0X2NmX2NsaW5pY2FsX3YxX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodHYxX3NhbXBsZXMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnR2MV9zYW1wbGVzIDwtIHRfY2ZfY2xpbmljYWxfdjFfZGVfc3ZhW1siaW5wdXQiXV0KdF9jZl9jbGluaWNhbF92MV9kZV9zdmEKdF9jZl9jbGluaWNhbF92MV90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9jbGluaWNhbF92MV9kZV9zdmEsIGtlZXBlcnMgPSBjZl9jb250cmFzdCwgc2NhbGVfcCA9IFRSVUUsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9WaXNpdHMvdF9jbGluaWNhbF92MV9jZl90YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9jbGluaWNhbF92MV90YWJsZV9zdmEKdF9jZl9jbGluaWNhbF92MV9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9jbGluaWNhbF92MV90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9WaXNpdHMvdF9jbGluaWNhbF92MV9jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfY2xpbmljYWxfdjFfc2lnX3N2YQoKZGltKHRfY2ZfY2xpbmljYWxfdjFfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfY2xpbmljYWxfdjFfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIEN1cmUvRmFpbCwgVHVtYWNvIFZpc2l0IDIKClRoZSB2aXNpdCAyIGFuZCB2aXNpdCAzIHNhbXBsZXMgYXJlIGludGVyZXN0aW5nIGJlY2F1c2UgdGhleSBwcm92aWRlCmFuIG9wcG9ydHVuaXR5IHRvIHNlZSBpZiB3ZSBjYW4gb2JzZXJ2ZSBjaGFuZ2VzIGluIHJlc3BvbnNlIGluIHRoZQptaWRkbGUgYW5kIGVuZCBvZiB0cmVhdG1lbnQuLi4KCmBgYHtyfQp0X2NmX2NsaW5pY2FsX3YyX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodHYyX3NhbXBsZXMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnR2Ml9zYW1wbGVzIDwtIHRfY2ZfY2xpbmljYWxfdjJfZGVfc3ZhW1siaW5wdXQiXV0KdF9jZl9jbGluaWNhbF92Ml9kZV9zdmEKdF9jZl9jbGluaWNhbF92Ml90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9jbGluaWNhbF92Ml9kZV9zdmEsIGtlZXBlcnMgPSBjZl9jb250cmFzdCwgc2NhbGVfcCA9IFRSVUUsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9WaXNpdHMvdF9jbGluaWNhbF92Ml9jZl90YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9jbGluaWNhbF92Ml90YWJsZV9zdmEKdF9jZl9jbGluaWNhbF92Ml9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9jbGluaWNhbF92Ml90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9WaXNpdHMvdF9jbGluaWNhbF92Ml9jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfY2xpbmljYWxfdjJfc2lnX3N2YQoKZGltKHRfY2ZfY2xpbmljYWxfdjJfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfY2xpbmljYWxfdjJfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIEN1cmUvRmFpbCwgVHVtYWNvIFZpc2l0IDMKClJlcGVhdCBmb3IgdmlzaXQgMwoKYGBge3J9CnRfY2ZfY2xpbmljYWxfdjNfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0djNfc2FtcGxlcywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFsbGVsID0gcGFyYWxsZWwsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdHYzX3NhbXBsZXMgPC0gdF9jZl9jbGluaWNhbF92M19kZV9zdmFbWyJpbnB1dCJdXQp0X2NmX2NsaW5pY2FsX3YzX2RlX3N2YQp0X2NmX2NsaW5pY2FsX3YzX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX2NsaW5pY2FsX3YzX2RlX3N2YSwga2VlcGVycyA9IGNmX2NvbnRyYXN0LCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L1Zpc2l0cy90X2NsaW5pY2FsX3YzX2NmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX2NsaW5pY2FsX3YzX3RhYmxlX3N2YQp0X2NmX2NsaW5pY2FsX3YzX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX2NsaW5pY2FsX3YzX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L1Zpc2l0cy90X2NsaW5pY2FsX3YzX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9jbGluaWNhbF92M19zaWdfc3ZhCgpkaW0odF9jZl9jbGluaWNhbF92M19zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9jbGluaWNhbF92M19zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCmBgYAoKIyBCeSBjZWxsIHR5cGUKCk5vdyBsZXQgdXMgc3dpdGNoIG91ciB2aWV3IHRvIGVhY2ggaW5kaXZpZHVhbCBjZWxsIHR5cGUgY29sbGVjdGVkLgpUaGUgaG9wZSBoZXJlIGlzIHRoYXQgd2Ugd2lsbCBiZSBhYmxlIHRvIGxlYXJuIHNvbWUgY2VsbC1zcGVjaWZpYwpkaWZmZXJlbmNlcyBpbiB0aGUgcmVzcG9uc2UgZm9yIHBlb3BsZSB3aG8gZGlkKG5vdCkgcmVzcG9uZCB3ZWxsLgoKIyMgQ3VyZS9GYWlsLCBCaW9wc2llcwoKQSBwcmltYXJ5IGh5cG90aGVzaXMvYXNzdW1wdGlvbiB0aGF0IHdlIGhhdmUgaGVsZCBmb3IgcXVpdGUgYSB3aGlsZQp3aXRoIHRoaXMgZGF0YTogdGhlIGJpb3BzeSBzYW1wbGVzLCBnaXZlbiB0aGF0IHRoZXkgYXJlIGNvbXByaXNlZCBvZgpoZXRlcmdlbmVvdXMgdGlzc3VlIHR5cGVzIGFzIHdlbGwgYXMgYSBtaXggb2YgaGVhbHRoeSBhbmQgaW5mZWN0ZWQKdGlzc3VlOyBhcmUgdW5saWtlbHkgdG8gYmUgdmVyeSBpbmZvcm1hdGlvbiByaWNoIHZpcyBhIHZpcyBjdXJlL2ZhaWwuClRoZSBmb2xsb3dpbmcgYmxvY2sgc2VlbXMgdG8gc3VwcG9ydCB0aGF0OyB3ZSBvYnNlcnZlIHZlcnkgZmV3IGdlbmVzCmluIHRoZSBiaW9wc2llcy4KCkkgdGhlcmVmb3JlIGRpZCBub3Qgc3BlbmQgdGhlIHRpbWUgaW52b2tpbmcgb3RoZXIgbW9kZWxzLgoKYGBge3J9CnRfY2ZfYmlvcHN5X2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF9iaW9wc2llcywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZHMgPSBtZXRob2RzKQp0X2Jpb3BzaWVzIDwtIHRfY2ZfYmlvcHN5X2RlX3N2YVtbImlucHV0Il1dCnRfY2ZfYmlvcHN5X2RlX3N2YQp0X2NmX2Jpb3BzeV90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9iaW9wc3lfZGVfc3ZhLCBrZWVwZXJzID0gdF9jZl9jb250cmFzdCwgc2NhbGVfcCA9IFRSVUUsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9CaW9wc2llcy90X2Jpb3BzeV9jZl90YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9iaW9wc3lfdGFibGVfc3ZhCnRfY2ZfYmlvcHN5X3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX2Jpb3BzeV90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9CaW9wc2llcy90X2NmX2Jpb3BzeV9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfYmlvcHN5X3NpZ19zdmEKCmRpbSh0X2NmX2Jpb3BzeV9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9iaW9wc3lfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIEN1cmUvRmFpbCwgTW9ub2N5dGVzCgpTYW1lIHF1ZXN0aW9uLCBidXQgdGhpcyB0aW1lIGxvb2tpbmcgYXQgbW9ub2N5dGVzLiAgSW4gYWRkaXRpb24sIHRoaXMKY29tcGFyaXNvbiB3YXMgZG9uZSB0d2ljZSwgb25jZSB1c2luZyBTVkEgYW5kIG9uY2UgdXNpbmcgdmlzaXQgYXMgYQpiYXRjaCBmYWN0b3IuCgpJIGhhdmUgYmVlbiB1c2luZyB0aGlzIGJsb2NrIHRvIGVuc3VyZSB0aGF0IGNoYW5nZWQgSSBoYXZlIGJlZW4gbWFraW5nCnRvIHRoZSBocGdsdG9vbHMgZG8gbm90IGNoYW5nZSB0aGUgYW5hbHlzaXMgcmVzdWx0cy4gIFRodXMgdGhlIGNvbW1lbnQKd2l0aCBhIGZldyBsb2dGQyB2YWx1ZXM7IHRob3NlIGFyZSB0aGUgZmlyc3QgNiBvYnNlcnZlZCBERVNlcTIgbG9nRkMKdmFsdWVzIGluIG15IGxhc3QgcmVzdWx0IGJlZm9yZSBJIG1hZGUgc29tZSBjaGFuZ2VzIHRvIGhwZ2x0b29scyBpbgpvcmRlciB0byBiZSBhYmxlIHRvIHdvcmsgd2l0aCByYW5kb20gZWZmZWN0IG1vZGVscy4KCmBgYHtyfQp0X2NmX21vbm9jeXRlX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF9tb25vY3l0ZXMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCiMjIFRoZSBzdnMgYXJlIGFkZGVkIHRvIHRoZSBleHByZXNzaW9uc2V0IGR1cmluZyBhbGxfcGFpcndpc2UuCnRfbW9ub2N5dGVzIDwtIHRfY2ZfbW9ub2N5dGVfZGVfc3ZhW1siaW5wdXQiXV0KdF9jZl9tb25vY3l0ZV9kZV9zdmEKdF9jZl9tb25vY3l0ZV90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9tb25vY3l0ZV9kZV9zdmEsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L01vbm9jeXRlcy90X21vbm9jeXRlX2NmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX21vbm9jeXRlX3RhYmxlX3N2YQpoZWFkKHRfY2ZfbW9ub2N5dGVfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV1bWyJkZXNlcV9sb2dmYyJdXSkKIyMgVGhlIGZpcnN0IGZldyB2YWx1ZXMgaW4gbXkgcHJlLWNoYW5nZSByZXN1bHQgc2V0IGFyZToKIyMgMC4zMzgsIC0wLjA3MiwgMC4wOTcsIC0wLjA5MSwgLTAuMTM1LCAwLjIzMwp0X2NmX21vbm9jeXRlX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX21vbm9jeXRlX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L01vbm9jeXRlcy90X21vbm9jeXRlX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9tb25vY3l0ZV9zaWdfc3ZhCgpkaW0odF9jZl9tb25vY3l0ZV9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9tb25vY3l0ZV9zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCgp0X2NmX21vbm9jeXRlX2RlX2JhdGNodmlzaXQgPC0gYWxsX3BhaXJ3aXNlKHRfbW9ub2N5dGVzLCBtb2RlbF9iYXRjaCA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdF9jZl9tb25vY3l0ZV9kZV9iYXRjaHZpc2l0CnRfY2ZfbW9ub2N5dGVfdGFibGVfYmF0Y2h2aXNpdCA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX21vbm9jeXRlX2RlX2JhdGNodmlzaXQsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L01vbm9jeXRlcy90X21vbm9jeXRlX2NmX3RhYmxlX2JhdGNodmlzaXQtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9tb25vY3l0ZV90YWJsZV9iYXRjaHZpc2l0CnRfY2ZfbW9ub2N5dGVfc2lnX2JhdGNodmlzaXQgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX21vbm9jeXRlX3RhYmxlX2JhdGNodmlzaXQsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9Nb25vY3l0ZXMvdF9tb25vY3l0ZV9jZl9zaWdfYmF0Y2h2aXNpdC12e3Zlcn0ueGxzeCIpKQp0X2NmX21vbm9jeXRlX3NpZ19iYXRjaHZpc2l0CgpkaW0odF9jZl9tb25vY3l0ZV9zaWdfYmF0Y2h2aXNpdCRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfbW9ub2N5dGVfc2lnX2JhdGNodmlzaXQkZGVzZXEkZG93bnNbWzFdXSkKYGBgCgojIyBJbmRpdmlkdWFsIHZpc2l0cywgTW9ub2N5dGVzCgpOb3cgZm9jdXMgaW4gb24gdGhlIG1vbm9jeXRlIHNhbXBsZXMgb24gYSBwZXItdmlzaXQgYmFzaXMuCgojIyMgVmlzaXQgMQoKYGBge3J9CnRfY2ZfbW9ub2N5dGVfdjFfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0djFfbW9ub2N5dGVzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZHMgPSBtZXRob2RzKQp0djFfbW9ub2N5dGVzIDwtIHRfY2ZfbW9ub2N5dGVfdjFfZGVfc3ZhW1siaW5wdXQiXV0KdF9jZl9tb25vY3l0ZV92MV9kZV9zdmEKdF9jZl9tb25vY3l0ZV92MV90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9tb25vY3l0ZV92MV9kZV9zdmEsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L01vbm9jeXRlcy90X21vbm9jeXRlX3YxX2NmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX21vbm9jeXRlX3YxX3RhYmxlX3N2YQp0X2NmX21vbm9jeXRlX3YxX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX21vbm9jeXRlX3YxX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L01vbm9jeXRlcy90X21vbm9jeXRlX3YxX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9tb25vY3l0ZV92MV9zaWdfc3ZhCgpkaW0odF9jZl9tb25vY3l0ZV92MV9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9tb25vY3l0ZV92MV9zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCmBgYAoKIyMjIE1vbm9jeXRlczogQ29tcGFyZSBzdmEgdG8gYmF0Y2gtaW4tbW9kZWwKCmBgYHtyfQpzdmFfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyh0X2NmX21vbm9jeXRlX3RhYmxlX3N2YVtbImRhdGEiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgdGJsMiA9IHRfY2ZfbW9ub2N5dGVfdGFibGVfYmF0Y2h2aXNpdFtbImRhdGEiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgcHkgPSAiZGVzZXFfYWRqcCIsIGx5ID0gImRlc2VxX2xvZ2ZjIikKc3ZhX2F1Y2MKCnNoYXJlZF9pZHMgPC0gcm93bmFtZXModF9jZl9tb25vY3l0ZV90YWJsZV9zdmFbWyJkYXRhIl1dW1sxXV0pICVpbiUKICByb3duYW1lcyh0X2NmX21vbm9jeXRlX3RhYmxlX2JhdGNodmlzaXRbWyJkYXRhIl1dW1sxXV0pCmZpcnN0IDwtIHRfY2ZfbW9ub2N5dGVfdGFibGVfc3ZhW1siZGF0YSJdXVtbMV1dW3NoYXJlZF9pZHMsIF0Kc2Vjb25kIDwtIHRfY2ZfbW9ub2N5dGVfdGFibGVfYmF0Y2h2aXNpdFtbImRhdGEiXV1bWzFdXVtyb3duYW1lcyhmaXJzdCksIF0KY29yLnRlc3QoZmlyc3RbWyJkZXNlcV9sb2dmYyJdXSwgc2Vjb25kW1siZGVzZXFfbG9nZmMiXV0pCmBgYAoKIyMgTmV1dHJvcGhpbCBzYW1wbGVzCgpTd2l0Y2ggY29udGV4dCB0byB0aGUgTmV1dHJvcGhpbHMsIG9uY2UgYWdhaW4gcmVwZWF0IHRoZSBhbmFseXNpcwp1c2luZyBTVkEgYW5kIHZpc2l0IGFzIGEgYmF0Y2ggZmFjdG9yLgoKYGBge3J9CnRfY2ZfbmV1dHJvcGhpbF9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRfbmV1dHJvcGhpbHMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFsbGVsID0gcGFyYWxsZWwsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZHMgPSBtZXRob2RzKQp0X2NmX25ldXRyb3BoaWxfZGVfc3ZhCnRfY2ZfbmV1dHJvcGhpbF90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9uZXV0cm9waGlsX2RlX3N2YSwga2VlcGVycyA9IHRfY2ZfY29udHJhc3QsIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX2NmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX25ldXRyb3BoaWxfdGFibGVfc3ZhCnRfY2ZfbmV1dHJvcGhpbF9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9uZXV0cm9waGlsX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF9jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfbmV1dHJvcGhpbF9zaWdfc3ZhCgpkaW0odF9jZl9uZXV0cm9waGlsX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX25ldXRyb3BoaWxfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQoKdF9jZl9uZXV0cm9waGlsX2RlX2JhdGNodmlzaXQgPC0gYWxsX3BhaXJ3aXNlKHRfbmV1dHJvcGhpbHMsIG1vZGVsX2JhdGNoID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFsbGVsID0gcGFyYWxsZWwsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdF9jZl9uZXV0cm9waGlsX2RlX2JhdGNodmlzaXQKdF9jZl9uZXV0cm9waGlsX3RhYmxlX2JhdGNodmlzaXQgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9uZXV0cm9waGlsX2RlX2JhdGNodmlzaXQsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF9jZl90YWJsZV9iYXRjaHZpc2l0LXZ7dmVyfS54bHN4IikpCnRfY2ZfbmV1dHJvcGhpbF90YWJsZV9iYXRjaHZpc2l0CnRfY2ZfbmV1dHJvcGhpbF9zaWdfYmF0Y2h2aXNpdCA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2ZfbmV1dHJvcGhpbF90YWJsZV9iYXRjaHZpc2l0LAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX2NmX3NpZ19iYXRjaHZpc2l0LXZ7dmVyfS54bHN4IikpCnRfY2ZfbmV1dHJvcGhpbF9zaWdfYmF0Y2h2aXNpdAoKZGltKHRfY2ZfbmV1dHJvcGhpbF9zaWdfYmF0Y2h2aXNpdCRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfbmV1dHJvcGhpbF9zaWdfYmF0Y2h2aXNpdCRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIyBOZXV0cm9waGlscyBieSB2aXNpdAoKV2hlbiBJIGRpZCB0aGlzIHdpdGggdGhlIG1vbm9jeXRlcywgSSBzcGxpdCBpdCB1cCBpbnRvIG11bHRpcGxlIGJsb2Nrcwpmb3IgZWFjaCB2aXNpdC4gIFRoaXMgdGltZSBJIGFtIGp1c3QgZ29pbmcgdG8gcnVuIHRoZW0gYWxsIHRvZ2V0aGVyLgoKYGBge3J9CnZpc2l0Y2ZfZmFjdG9yIDwtIHBhc3RlMCgidiIsIHBEYXRhKHRfbmV1dHJvcGhpbHMpW1sidmlzaXRudW1iZXIiXV0sICJfIiwKICAgICAgICAgICAgICAgICAgICAgICAgIHBEYXRhKHRfbmV1dHJvcGhpbHMpW1siZmluYWxvdXRjb21lIl1dKQp0X25ldXRyb3BoaWxfdmlzaXRjZiA8LSBzZXRfZXhwdF9jb25kaXRpb25zKHRfbmV1dHJvcGhpbHMsIGZhY3Q9dmlzaXRjZl9mYWN0b3IpCgp0X2NmX25ldXRyb3BoaWxfdmlzaXRzX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF9uZXV0cm9waGlsX3Zpc2l0Y2YsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRfY2ZfbmV1dHJvcGhpbF92aXNpdHNfZGVfc3ZhCnRfY2ZfbmV1dHJvcGhpbF92aXNpdHNfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2ZfbmV1dHJvcGhpbF92aXNpdHNfZGVfc3ZhLCBrZWVwZXJzID0gdmlzaXRjZl9jb250cmFzdHMsIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX3Zpc2l0Y2ZfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfbmV1dHJvcGhpbF92aXNpdHNfdGFibGVfc3ZhCnRfY2ZfbmV1dHJvcGhpbF92aXNpdHNfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2ZfbmV1dHJvcGhpbF92aXNpdHNfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX3Zpc2l0Y2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX25ldXRyb3BoaWxfdmlzaXRzX3NpZ19zdmEKCmRpbSh0X2NmX25ldXRyb3BoaWxfdmlzaXRzX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX25ldXRyb3BoaWxfdmlzaXRzX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKYGBgCgpOb3cgVjEKCmBgYHtyfQp0X2NmX25ldXRyb3BoaWxfdjFfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0djFfbmV1dHJvcGhpbHMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFsbGVsID0gcGFyYWxsZWwsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZHMgPSBtZXRob2RzKQp0X2NmX25ldXRyb3BoaWxfdjFfZGVfc3ZhCnRfY2ZfbmV1dHJvcGhpbF92MV90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9uZXV0cm9waGlsX3YxX2RlX3N2YSwga2VlcGVycyA9IHRfY2ZfY29udHJhc3QsIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX3YxX2NmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX25ldXRyb3BoaWxfdjFfdGFibGVfc3ZhCnRfY2ZfbmV1dHJvcGhpbF92MV9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9uZXV0cm9waGlsX3YxX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF92MV9jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfbmV1dHJvcGhpbF92MV9zaWdfc3ZhCgpkaW0odF9jZl9uZXV0cm9waGlsX3YxX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX25ldXRyb3BoaWxfdjFfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCkZvbGxvd2VkIGJ5IHZpc2l0IDIuCgpgYGB7cn0KdF9jZl9uZXV0cm9waGlsX3YyX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodHYyX25ldXRyb3BoaWxzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdF9jZl9uZXV0cm9waGlsX3YyX2RlX3N2YQp0X2NmX25ldXRyb3BoaWxfdjJfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2ZfbmV1dHJvcGhpbF92Ml9kZV9zdmEsIHNjYWxlX3AgPSBUUlVFLCBrZWVwZXJzID0gdF9jZl9jb250cmFzdCwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF92Ml9jZl90YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9uZXV0cm9waGlsX3YyX3RhYmxlX3N2YQp0X2NmX25ldXRyb3BoaWxfdjJfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2ZfbmV1dHJvcGhpbF92Ml90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9OZXV0cm9waGlscy90X25ldXRyb3BoaWxfdjJfY2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX25ldXRyb3BoaWxfdjJfc2lnX3N2YQoKZGltKHRfY2ZfbmV1dHJvcGhpbF92Ml9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9uZXV0cm9waGlsX3YyX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKYGBgCgphbmQgdmlzaXQgMy4KCmBgYHtyfQp0X2NmX25ldXRyb3BoaWxfdjNfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0djNfbmV1dHJvcGhpbHMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFsbGVsID0gcGFyYWxsZWwsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZHMgPSBtZXRob2RzKQp0X2NmX25ldXRyb3BoaWxfdjNfZGVfc3ZhCnRfY2ZfbmV1dHJvcGhpbF92M190YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9uZXV0cm9waGlsX3YzX2RlX3N2YSwga2VlcGVycyA9IHRfY2ZfY29udHJhc3QsIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX3YzX2NmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX25ldXRyb3BoaWxfdjNfdGFibGVfc3ZhCnRfY2ZfbmV1dHJvcGhpbF92M19zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9uZXV0cm9waGlsX3YzX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF92M19jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfbmV1dHJvcGhpbF92M19zaWdfc3ZhCgpkaW0odF9jZl9uZXV0cm9waGlsX3YzX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX25ldXRyb3BoaWxfdjNfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIyBOZXV0cm9waGlsczogQ29tcGFyZSBzdmEgdG8gYmF0Y2gtaW4tbW9kZWwKCmBgYHtyfQpzdmFfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyh0X2NmX25ldXRyb3BoaWxfdGFibGVfc3ZhW1siZGF0YSJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgICAgICB0YmwyID0gdF9jZl9uZXV0cm9waGlsX3RhYmxlX2JhdGNodmlzaXRbWyJkYXRhIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHB5ID0gImRlc2VxX2FkanAiLCBseSA9ICJkZXNlcV9sb2dmYyIpCnN2YV9hdWNjCgpzaGFyZWRfaWRzIDwtIHJvd25hbWVzKHRfY2ZfbmV1dHJvcGhpbF90YWJsZV9zdmFbWyJkYXRhIl1dW1sxXV0pICVpbiUKICByb3duYW1lcyh0X2NmX25ldXRyb3BoaWxfdGFibGVfYmF0Y2h2aXNpdFtbImRhdGEiXV1bWzFdXSkKZmlyc3QgPC0gdF9jZl9uZXV0cm9waGlsX3RhYmxlX3N2YVtbImRhdGEiXV1bWzFdXVtzaGFyZWRfaWRzLCBdCnNlY29uZCA8LSB0X2NmX25ldXRyb3BoaWxfdGFibGVfYmF0Y2h2aXNpdFtbImRhdGEiXV1bWzFdXVtyb3duYW1lcyhmaXJzdCksIF0KY29yLnRlc3QoZmlyc3RbWyJkZXNlcV9sb2dmYyJdXSwgc2Vjb25kW1siZGVzZXFfbG9nZmMiXV0pCmBgYAoKIyMgRW9zaW5vcGhpbHMKClRoaXMgdGltZSwgd2l0aCBmZWVsaW5nISAgUmVwZWF0aW5nIHRoZSBzYW1lIHNldCBvZiB0YXNrcyB3aXRoIHRoZQplb3Npbm9waGlsIHNhbXBsZXMuCgpgYGB7cn0KdF9jZl9lb3Npbm9waGlsX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF9lb3Npbm9waGlscywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRfY2ZfZW9zaW5vcGhpbF9kZV9zdmEKdF9jZl9lb3Npbm9waGlsX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX2Vvc2lub3BoaWxfZGVfc3ZhLCBrZWVwZXJzID0gdF9jZl9jb250cmFzdCwgc2NhbGVfcCA9IFRSVUUsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfY2ZfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfZW9zaW5vcGhpbF90YWJsZV9zdmEKdF9jZl9lb3Npbm9waGlsX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX2Vvc2lub3BoaWxfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vRW9zaW5vcGhpbHMvdF9lb3Npbm9waGlsX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9lb3Npbm9waGlsX3NpZ19zdmEKCmRpbSh0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfZW9zaW5vcGhpbF9zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCgprbml0cjo6a2FibGUoaGVhZCh0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkpCmtuaXRyOjprYWJsZShoZWFkKHRfY2ZfZW9zaW5vcGhpbF9zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pKQpgYGAKClJlcGVhdCB3aXRoIGJhdGNoIGluIHRoZSBtb2RlbC4KCmBgYHtyfQp0X2NmX2Vvc2lub3BoaWxfZGVfYmF0Y2h2aXNpdCA8LSBhbGxfcGFpcndpc2UodF9lb3Npbm9waGlscywgbW9kZWxfYmF0Y2ggPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZHMgPSBtZXRob2RzKQp0X2NmX2Vvc2lub3BoaWxfZGVfYmF0Y2h2aXNpdAp0X2NmX2Vvc2lub3BoaWxfdGFibGVfYmF0Y2h2aXNpdCA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX2Vvc2lub3BoaWxfZGVfYmF0Y2h2aXNpdCwga2VlcGVycyA9IHRfY2ZfY29udHJhc3QsIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vRW9zaW5vcGhpbHMvdF9lb3Npbm9waGlsX2NmX3RhYmxlX2JhdGNodmlzaXQtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9lb3Npbm9waGlsX3RhYmxlX2JhdGNodmlzaXQKdF9jZl9lb3Npbm9waGlsX3NpZ19iYXRjaHZpc2l0IDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9lb3Npbm9waGlsX3RhYmxlX2JhdGNodmlzaXQsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfY2Zfc2lnX2JhdGNodmlzaXQtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9lb3Npbm9waGlsX3NpZ19iYXRjaHZpc2l0CgpkaW0odF9jZl9lb3Npbm9waGlsX3NpZ19iYXRjaHZpc2l0JGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9lb3Npbm9waGlsX3NpZ19iYXRjaHZpc2l0JGRlc2VxJGRvd25zW1sxXV0pCgprbml0cjo6a2FibGUoaGVhZCh0X2NmX2Vvc2lub3BoaWxfc2lnX2JhdGNodmlzaXQkZGVzZXEkdXBzW1sxXV0pKQprbml0cjo6a2FibGUoaGVhZCh0X2NmX2Vvc2lub3BoaWxfc2lnX2JhdGNodmlzaXQkZGVzZXEkZG93bnNbWzFdXSkpCmBgYAoKUmVwZWF0IHdpdGggdmlzaXQgaW4gdGhlIGNvbmRpdGlvbiBjb250cmFzdC4KCmBgYHtyfQp2aXNpdGNmX2ZhY3RvciA8LSBwYXN0ZTAoInYiLCBwRGF0YSh0X2Vvc2lub3BoaWxzKVtbInZpc2l0bnVtYmVyIl1dLCAiXyIsCiAgICAgICAgICAgICAgICAgICAgICAgICBwRGF0YSh0X2Vvc2lub3BoaWxzKVtbImZpbmFsb3V0Y29tZSJdXSkKdF9lb3Npbm9waGlsX3Zpc2l0Y2YgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0X2Vvc2lub3BoaWxzLCBmYWN0ID0gdmlzaXRjZl9mYWN0b3IpCgp0X2NmX2Vvc2lub3BoaWxfdmlzaXRzX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF9lb3Npbm9waGlsX3Zpc2l0Y2YsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRfY2ZfZW9zaW5vcGhpbF92aXNpdHNfZGVfc3ZhCnRfY2ZfZW9zaW5vcGhpbF92aXNpdHNfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogICB0X2NmX2Vvc2lub3BoaWxfdmlzaXRzX2RlX3N2YSwga2VlcGVycyA9IHZpc2l0Y2ZfY29udHJhc3RzLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L0Vvc2lub3BoaWxzL3RfZW9zaW5vcGhpbF92aXNpdGNmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX2Vvc2lub3BoaWxfdmlzaXRzX3RhYmxlX3N2YQp0X2NmX2Vvc2lub3BoaWxfdmlzaXRzX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX2Vvc2lub3BoaWxfdmlzaXRzX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L0Vvc2lub3BoaWxzL3RfZW9zaW5vcGhpbF92aXNpdGNmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9lb3Npbm9waGlsX3Zpc2l0c19zaWdfc3ZhCgpkaW0odF9jZl9lb3Npbm9waGlsX3Zpc2l0c19zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9lb3Npbm9waGlsX3Zpc2l0c19zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCgprbml0cjo6a2FibGUoaGVhZCh0X2NmX2Vvc2lub3BoaWxfdmlzaXRzX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pKQprbml0cjo6a2FibGUoaGVhZCh0X2NmX2Vvc2lub3BoaWxfdmlzaXRzX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkpCmBgYAoKIyBDb21wYXJlIHRvIFZpc2l0IGV4cGxpY2l0bHkgaW4gdGhlIG1vZGVsCgpBcyBhIHJlbWluZGVyLCB0aGVyZSBhcmUgYSBmZXcgZ2VuZXMgb2YgcGFydGljdWxhciBpbnRlcmVzdDoKCmBgYHtyfQpleHBlY3RlZF9nZW5lcyA8LSBjKCJJRkk0NEwiLCAiSUZJMjciLCAiUFJSNSIsICJQUlI1LUFSSEdBUDgiLCAiUkhDRSIsCiAgICAgICAgICAgICAgICAgICAgIkZCWE8zOSIsICJSU0FEMiIsICJTTVROTDEiLCAiVVNQMTgiLCAiQUZBUDEiKQphbm5vdCA8LSBmRGF0YSh0X21vbm9jeXRlcykKd2FudGVkX2lkeCA8LSBhbm5vdFtbImhnbmNfc3ltYm9sIl1dICVpbiUgZXhwZWN0ZWRfZ2VuZXMKZXhwZWN0ZWRfZW5zZyA8LSByb3duYW1lcyhhbm5vdClbd2FudGVkX2lkeF0KYGBgCgojIyBNb25vY3l0ZXMKCkVpdGhlciBhYm92ZSBvciBiZWxvdyB0aGlzIHNlY3Rpb24gSSBoYXZlIGEgbmVhcmx5IGlkZW50aWNhbCBibG9jawp3aGljaCBzZWVrcyB0byBkZW1vbnN0cmF0ZSB0aGUgc2ltaWxhcml0aWVzL2RpZmZlcmVuY2Ugb2JzZXJ2ZWQKYmV0d2VlbiBteSBwcmVmZXJyZWQvc2ltcGxpZmllZCBtb2RlbCB2cy4gYSBtb3JlIGV4cGxpY2l0bHkgY29ycmVjdAphbmQgY29tcGxleCBtb2RlbC4gIElmIHRoZSB0cmVuZCBob2xkcyBmcm9tIHdoYXQgd2Ugb2JzZXJ2ZWQgd2l0aCB0aGUKZW9zaW5vcGhpbHMgYW5kIG5ldXRyb3BoaWxzLCBJIHdvdWxkIGV4cGVjdCB0byBzZWUgdGhhdCB0aGUgcmVzdWx0cwphcmUgbWFyZ2luYWxseSAnYmV0dGVyJyAoYXMgZGVmaW5lZCBieSB0aGUgc3RyZW5ndGggb2YgdGhlIHBlcmNlaXZlZAppbnRlcmxldWtpbiByZXNwb25zZSBhbmQgcmF3IG51bWJlciBvZiAnc2lnbmlmaWNhbnQnIGdlbmVzKTsgYnV0IEkKcmVtYWluIHdvcnJpZWQgdGhhdCB0aGlzIHdpbGwgcHJvdmUgYSBtb3JlIGJyaXR0bGUgYW5kIGVycm9yLXByb25lCmFuYWx5c2lzLgoKIyMjIEZpbHRlciB0aGUgZGF0YSBhbmQgcGVyZm9ybSBzdmFzZXEKClN0YXJ0IG91dCBieSBleHRyYWN0aW5nIHRoZSBwZXJjZWl2ZWQgc3ZzIHZpYSBzdmFzZXEgb24gdGhlIGZpbHRlcmVkIGlucHV0LgoKYGBge3J9CiMjIFRoZSBvcmlnaW5hbCBwYWlyd2lzZSBpbnZvY2F0aW9uIHdpdGggc3ZhOgojI3RfY2ZfbW9ub2N5dGVfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X21vbm9jeXRlLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAojIyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIgPSBUUlVFLCBwYXJhbGxlbCA9IEZBTFNFLAojIyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdGVzdF9tb25vY3l0ZXMgPC0gbm9ybWFsaXplX2V4cHQodF9tb25vY3l0ZXMsIGZpbHRlciA9ICJzaW1wbGUiKQp0ZXN0X21vbm9fZGVzaWduIDwtIHBEYXRhKHRlc3RfbW9ub2N5dGVzKQp0ZXN0X2Zvcm11bGEgPC0gYXMuZm9ybXVsYSgifiBmaW5hbG91dGNvbWUgKyB2aXNpdG51bWJlciIpCnRlc3RfbW9kZWwgPC0gbW9kZWwubWF0cml4KHRlc3RfZm9ybXVsYSwgZGF0YSA9IHRlc3RfbW9ub19kZXNpZ24pCm51bGxfZm9ybXVsYSA8LSBhcy5mb3JtdWxhKCJ+IHZpc2l0bnVtYmVyIikKbnVsbF9tb2RlbCA8LSBtb2RlbC5tYXRyaXgobnVsbF9mb3JtdWxhLCBkYXRhID0gdGVzdF9tb25vX2Rlc2lnbikKCmxpbmVhcl9tdHJ4IDwtIGV4cHJzKHRlc3RfbW9ub2N5dGVzKQpsMl9tdHJ4IDwtIGxvZzIobGluZWFyX210cnggKyAxKQpjaG9zZW5fc3Vycm9nYXRlcyA8LSBzdmE6Om51bS5zdihkYXQgPSBsMl9tdHJ4LCBtb2QgPSB0ZXN0X21vZGVsKQpjaG9zZW5fc3Vycm9nYXRlcwoKc3Vycm9nYXRlX3Jlc3VsdCA8LSBzdmE6OnN2YXNlcSgKICBkYXQgPSBsaW5lYXJfbXRyeCwgbi5zdiA9IGNob3Nlbl9zdXJyb2dhdGVzLCBtb2QgPSB0ZXN0X21vZGVsLCBtb2QwID0gbnVsbF9tb2RlbCkKbW9kZWxfYWRqdXN0IDwtIGFzLm1hdHJpeChzdXJyb2dhdGVfcmVzdWx0W1sic3YiXV0pCmBgYAoKIyMjIEFkZCB0aGUgc3ZzIHRvIHRoZSBkYXRhIG1vZGVsIGFuZCBjcmVhdGUgYSBuZXcgREVTZXEyIGRhdGFzZXQKCldlIGNhbiBub3cgY3JlYXRlIGEgbmV3IERFU2VxMiBkYXRhc2V0IHdoaWNoIHRha2VzIHRoZXNlIHB1dGF0aXZlCnN1cnJvZ2F0ZXMgaW50byBhY2NvdW50LgoKYGBge3J9CmNvbG5hbWVzKG1vZGVsX2FkanVzdCkgPC0gcGFzdGUwKCJTViIsIHNlcV9sZW4oY2hvc2VuX3N1cnJvZ2F0ZXMpKQpyb3duYW1lcyhtb2RlbF9hZGp1c3QpIDwtIHJvd25hbWVzKHBEYXRhKHRlc3RfbW9ub2N5dGVzKSkKYWRkaXRpb25fc3RyaW5nIDwtICIiCmZvciAoc3YgaW4gY29sbmFtZXMobW9kZWxfYWRqdXN0KSkgewogIGFkZGl0aW9uX3N0cmluZyA8LSBwYXN0ZTAoYWRkaXRpb25fc3RyaW5nLCAiICsgIiwgc3YpCn0KbG9uZ2VyX21vZGVsIDwtIGFzLmZvcm11bGEoZ2x1ZSgifiBmaW5hbG91dGNvbWUgKyB2aXNpdG51bWJlcnthZGRpdGlvbl9zdHJpbmd9IikpCm1vbm9fZGVzaWduX3N2cyA8LSBjYmluZCh0ZXN0X21vbm9fZGVzaWduLCBtb2RlbF9hZGp1c3QpCgpzdW1tYXJpemVkIDwtIERFU2VxMjo6REVTZXFEYXRhU2V0RnJvbU1hdHJpeChjb3VudERhdGEgPSBsaW5lYXJfbXRyeCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sRGF0YSA9IG1vbm9fZGVzaWduX3N2cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGVzaWduID0gbG9uZ2VyX21vZGVsKQpgYGAKCiMjIyBSdW4gREVTZXEgYW5kIGNvbXBhcmUgdGhlIHJlc3VsdHMgdG8gb3VyIHByZXZpb3VzIGludm9jYXRpb24KCkluIG9yZGVyIHRvIGNvbXBhcmUgdGhlc2UgYW5kIHRoZSBwcmV2aW91cyByZXN1bHRzLCBJIHRlbmQgdG8gcmVseSBvbgpzaW1wbGUgY29ycmVsYXRpb25zIGFuZCBhdWNjIHBsb3RzLiAgSSBoYXZlIGJlZW4gcmVhZGluZyB0aGUgbW9kZWxyCmNvZGUgcmVjZW50bHkgYW5kIGl0IGxvb2tzIGxpa2UgdGhlcmUgaXMgYSBzdWl0ZSBvZiBvdGhlciBtZXRyaWNzCndoaWNoIG1pZ2h0IGJlIG1vcmUgYXBwcm9wcmlhdGUuCgpgYGB7cn0KZGVzZXFfcnVuIDwtIERFU2VxMjo6REVTZXEoc3VtbWFyaXplZCkKZGVzZXFfdGFibGUgPC0gYXMuZGF0YS5mcmFtZShERVNlcTI6OnJlc3VsdHMob2JqZWN0ID0gZGVzZXFfcnVuLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb250cmFzdCA9IGMoImZpbmFsb3V0Y29tZSIsICJmYWlsdXJlIiwgImN1cmUiKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZm9ybWF0ID0gIkRhdGFGcmFtZSIpKQoKYmlnX3RhYmxlIDwtIHRfY2ZfbW9ub2N5dGVfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0Kb25seV9kZXNlcSA8LSBiaWdfdGFibGVbLCBjKCJkZXNlcV9sb2dmYyIsICJkZXNlcV9hZGpwIildCm1lcmdlZCA8LSBtZXJnZShkZXNlcV90YWJsZSwgb25seV9kZXNlcSwgYnkgPSAicm93Lm5hbWVzIikKcm93bmFtZXMobWVyZ2VkKSA8LSBtZXJnZWRbWyJSb3cubmFtZXMiXV0KbWVyZ2VkW1siUm93Lm5hbWVzIl1dIDwtIE5VTEwKCmNvcl92YWx1ZSA8LSBjb3IudGVzdChtZXJnZWRbWyJsb2cyRm9sZENoYW5nZSJdXSwgbWVyZ2VkW1siZGVzZXFfbG9nZmMiXV0pCmNvcl92YWx1ZQpsb2dmY19wbG90dGVyIDwtIHBsb3RfbGluZWFyX3NjYXR0ZXIobWVyZ2VkWywgYygibG9nMkZvbGRDaGFuZ2UiLCAiZGVzZXFfbG9nZmMiKV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhZGRfY29yID0gVFJVRSwgYWRkX3JzcSA9IFRSVUUsIGlkZW50aXR5ID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFkZF9lcXVhdGlvbiA9IFRSVUUpCmxvZ2ZjX3Bsb3QgPC0gbG9nZmNfcGxvdHRlcltbInNjYXR0ZXIiXV0gKwogIHhsYWIoIkRFU2VxMiBsb2cyRkM6IFZpc2l0IGV4cGxpY2l0bHkgaW4gbW9kZWwiKSArCiAgeWxhYigiREVTZXEyIGxvZzJGQzogRGVmYXVsdCBwYWlyd2lzZSBjb21wYXJpc29uIikgKwogIGdndGl0bGUoZ2x1ZSgiQ29tcGFyaW5nIHJlc3VsdHMgZnJvbSBtb2RlbHM6IHtwcmV0dHlOdW0oY29yX3ZhbHVlW1snZXN0aW1hdGUnXV0pfSAocGVhcnNvbikiKSkKcHAoZmlsZSA9ICJmaWd1cmVzL2NvbXBhcmVfY2ZfYW5kX3Zpc2l0X2luX21vZGVsX21vbm9jeXRlX2xvZ2ZjLnN2ZyIpCmxvZ2ZjX3Bsb3QKZGV2Lm9mZigpCmxvZ2ZjX3Bsb3QKCmNvcl92YWx1ZSA8LSBjb3IudGVzdChtZXJnZWRbWyJwYWRqIl1dLCBtZXJnZWRbWyJkZXNlcV9hZGpwIl1dLCBtZXRob2QgPSAic3BlYXJtYW4iKQpjb3JfdmFsdWUKYWRqcF9wbG90dGVyIDwtIHBsb3RfbGluZWFyX3NjYXR0ZXIobWVyZ2VkWywgYygicGFkaiIsICJkZXNlcV9hZGpwIildKQphZGpwX3Bsb3QgPC0gYWRqcF9wbG90dGVyW1sic2NhdHRlciJdXSArCiAgeGxhYigiREVTZXEyIGFkanA6IFZpc2l0IGV4cGxpY2l0bHkgaW4gbW9kZWwiKSArCiAgeWxhYigiREVTZXEyIGFkanA6IERlZmF1bHQgcGFpcndpc2UgY29tcGFyaXNvbiIpICsKICBnZ3RpdGxlKGdsdWUoIkNvbXBhcmluZyByZXN1bHRzIGZyb20gbW9kZWxzOiB7cHJldHR5TnVtKGNvcl92YWx1ZVtbJ2VzdGltYXRlJ11dKX0gKHNwZWFybWFuKSIpKQpwcChmaWxlID0gImltYWdlcy9jb21wYXJlX2NmX2FuZF92aXNpdF9pbl9tb2RlbF9tb25vY3l0ZV9hZGpwLnN2ZyIpCmFkanBfcGxvdApkZXYub2ZmKCkKYWRqcF9wbG90CgpwcmV2aW91c19zaWdfaWR4IDwtIGJpZ190YWJsZVtbImRlc2VxX2FkanAiXV0gPD0gMC4wNSAmCiAgYWJzKGJpZ190YWJsZVtbImRlc2VxX2xvZ2ZjIl1dID49IDEuMCkKc3VtbWFyeShwcmV2aW91c19zaWdfaWR4KQpwcmV2aW91c19nZW5lcyA8LSByb3duYW1lcyhiaWdfdGFibGUpW3ByZXZpb3VzX3NpZ19pZHhdCgpuZXdfc2lnX2lkeCA8LSBhYnMoZGVzZXFfdGFibGVbWyJsb2cyRm9sZENoYW5nZSJdXSkgPj0gMS4wICYKICBkZXNlcV90YWJsZVtbInBhZGoiXV0gPCAwLjA1Cm5ld19nZW5lcyA8LSByb3duYW1lcyhkZXNlcV90YWJsZSlbbmV3X3NpZ19pZHhdCm5hX2lkeCA8LSBpcy5uYShuZXdfZ2VuZXMpCm5ld19nZW5lcyA8LSBuZXdfZ2VuZXNbIW5hX2lkeF0KClZlbm5lcmFibGU6OlZlbm4obGlzdCgicHJldmlvdXMiID0gcHJldmlvdXNfZ2VuZXMsICJuZXciID0gbmV3X2dlbmVzKSkKCnRlc3RfbmV3IDwtIHNpbXBsZV9ncHJvZmlsZXIobmV3X2dlbmVzKQp0ZXN0X25ldwp0ZXN0X29sZCA8LSBzaW1wbGVfZ3Byb2ZpbGVyKHByZXZpb3VzX2dlbmVzKQp0ZXN0X29sZAoKbmV3X2Fubm90YXRlZCA8LSBtZXJnZShmRGF0YSh0X21vbm9jeXRlcyksIGRlc2VxX3RhYmxlLCBieSA9ICJyb3cubmFtZXMiKQpyb3duYW1lcyhuZXdfYW5ub3RhdGVkKSA8LSBuZXdfYW5ub3RhdGVkW1siUm93Lm5hbWVzIl1dCm5ld19hbm5vdGF0ZWRbWyJSb3cubmFtZXMiXV0gPC0gTlVMTAp3cml0ZV94bHN4KGRhdGEgPSBuZXdfYW5ub3RhdGVkLCBleGNlbCA9ICJleGNlbC9tb25vY3l0ZV92aXNpdF9pbl9tb2RlbF9zdmFfY2ZfbmV3Lnhsc3giKQoKb2xkX2Fubm90YXRlZCA8LSBtZXJnZShmRGF0YSh0X2Vvc2lub3BoaWxzKSwgYmlnX3RhYmxlLCBieSA9ICJyb3cubmFtZXMiKQpyb3duYW1lcyhvbGRfYW5ub3RhdGVkKSA8LSBvbGRfYW5ub3RhdGVkW1siUm93Lm5hbWVzIl1dCm9sZF9hbm5vdGF0ZWRbWyJSb3cubmFtZXMiXV0gPC0gTlVMTAp3cml0ZV94bHN4KGRhdGEgPSBvbGRfYW5ub3RhdGVkLCBleGNlbCA9ICJleGNlbC9tb25vY3l0ZV92aXNpdF9pbl9tb2RlbF9zdmFfY2Zfb2xkLnhsc3giKQpgYGAKCkFyZSB0aGUgZXhwZWN0ZWQgRW5zZW1ibCBnZW5lIElEcyBmb3VuZCBpbiB0aGlzIG5ldyBzZXQ/CgpgYGB7cn0Kc3VtKG5ld19nZW5lcyAlaW4lIGV4cGVjdGVkX2Vuc2cpCmBgYAoKIyMgRW9zaW5vcGhpbHMKCldlIHdpc2ggdG8gZW5zdXJlIHRoYXQgbXkgbW9kZWwgc2ltcGxpZmljYXRpb24gZGlkIG5vdCBkbyBhbnl0aGluZwppbmNvcnJlY3QgdG8gdGhlIGRhdGEgZm9yIGFsbCB0aHJlZSBjZWxsIHR5cGVzLCBJIGFscmVhZHkgZGlkIHRoaXMgZm9yCnRoZSBuZXV0cm9waGlscywgbGV0IHVzIHJlcGVhdCBmb3IgdGhlIGVvc2lub3BoaWxzLiAgSSBhbSB0aGVyZWZvcmUKKG1vc3RseSkgY29weS9wYXN0aW5nIHRoZSBuZXV0cm9waGlsIHNlY3Rpb24gaGVyZS4KCmBgYHtyfQojIyBUaGUgb3JpZ2luYWwgcGFpcndpc2UgaW52b2NhdGlvbiB3aXRoIHN2YToKI3RfY2ZfZW9zaW5vcGhpbF9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRfZW9zaW5vcGhpbHMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIgPSBUUlVFLCBwYXJhbGxlbD1GQUxTRSwgbWV0aG9kcyA9IG1ldGhvZHMpCnRlc3RfZW9zaW5vcGhpbHMgPC0gbm9ybWFsaXplX2V4cHQodF9lb3Npbm9waGlscywgZmlsdGVyID0gInNpbXBsZSIpCnRlc3RfZW9fZGVzaWduIDwtIHBEYXRhKHRlc3RfZW9zaW5vcGhpbHMpCnRlc3RfZm9ybXVsYSA8LSBhcy5mb3JtdWxhKCJ+IDAgKyBmaW5hbG91dGNvbWUgKyB2aXNpdG51bWJlciIpCnRlc3RfbW9kZWwgPC0gbW9kZWwubWF0cml4KHRlc3RfZm9ybXVsYSwgZGF0YSA9IHRlc3RfZW9fZGVzaWduKQpudWxsX2Zvcm11bGEgPC0gYXMuZm9ybXVsYSgifiAwICsgdmlzaXRudW1iZXIiKQpudWxsX21vZGVsIDwtIG1vZGVsLm1hdHJpeChudWxsX2Zvcm11bGEsIGRhdGEgPSB0ZXN0X2VvX2Rlc2lnbikKCmxpbmVhcl9tdHJ4IDwtIGV4cHJzKHRlc3RfZW9zaW5vcGhpbHMpCmwyX210cnggPC0gbG9nMihsaW5lYXJfbXRyeCArIDEpCmNob3Nlbl9zdXJyb2dhdGVzIDwtIHN2YTo6bnVtLnN2KGRhdCA9IGwyX210cngsIG1vZCA9IHRlc3RfbW9kZWwpCmNob3Nlbl9zdXJyb2dhdGVzCgpzdXJyb2dhdGVfcmVzdWx0IDwtIHN2YTo6c3Zhc2VxKAogIGRhdCA9IGxpbmVhcl9tdHJ4LCBuLnN2ID0gY2hvc2VuX3N1cnJvZ2F0ZXMsIG1vZCA9IHRlc3RfbW9kZWwsIG1vZDAgPSBudWxsX21vZGVsKQptb2RlbF9hZGp1c3QgPC0gYXMubWF0cml4KHN1cnJvZ2F0ZV9yZXN1bHRbWyJzdiJdXSkKCmNvbG5hbWVzKG1vZGVsX2FkanVzdCkgPC0gYygiU1YxIiwgIlNWMiIsICJTVjMiKQpyb3duYW1lcyhtb2RlbF9hZGp1c3QpIDwtIHJvd25hbWVzKHBEYXRhKHRlc3RfZW9zaW5vcGhpbHMpKQpsb25nZXJfbW9kZWwgPC0gYXMuZm9ybXVsYSgifiBmaW5hbG91dGNvbWUgKyB2aXNpdG51bWJlciArIFNWMSArIFNWMiArIFNWMyIpCmVvX2Rlc2lnbl9zdnMgPC0gY2JpbmQodGVzdF9lb19kZXNpZ24sIG1vZGVsX2FkanVzdCkKc3VtbWFyaXplZCA8LSBERVNlcTI6OkRFU2VxRGF0YVNldEZyb21NYXRyaXgoY291bnREYXRhID0gbGluZWFyX210cngsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbERhdGEgPSBlb19kZXNpZ25fc3ZzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkZXNpZ24gPSBsb25nZXJfbW9kZWwpCmRlc2VxX3J1biA8LSBERVNlcTI6OkRFU2VxKHN1bW1hcml6ZWQpCmRlc2VxX3RhYmxlIDwtIGFzLmRhdGEuZnJhbWUoREVTZXEyOjpyZXN1bHRzKG9iamVjdCA9IGRlc2VxX3J1biwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29udHJhc3QgPSBjKCJmaW5hbG91dGNvbWUiLCAiZmFpbHVyZSIsICJjdXJlIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZvcm1hdCA9ICJEYXRhRnJhbWUiKSkKCmJpZ190YWJsZSA8LSB0X2NmX2Vvc2lub3BoaWxfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0Kb25seV9kZXNlcSA8LSBiaWdfdGFibGVbLCBjKCJkZXNlcV9sb2dmYyIsICJkZXNlcV9hZGpwIildCm1lcmdlZCA8LSBtZXJnZShkZXNlcV90YWJsZSwgb25seV9kZXNlcSwgYnkgPSAicm93Lm5hbWVzIikKcm93bmFtZXMobWVyZ2VkKSA8LSBtZXJnZWRbWyJSb3cubmFtZXMiXV0KbWVyZ2VkW1siUm93Lm5hbWVzIl1dIDwtIE5VTEwKCmNvcl92YWx1ZSA8LSBjb3IudGVzdChtZXJnZWRbWyJsb2cyRm9sZENoYW5nZSJdXSwgbWVyZ2VkW1siZGVzZXFfbG9nZmMiXV0pCmNvcl92YWx1ZQpsb2dmY19wbG90dGVyIDwtIHBsb3RfbGluZWFyX3NjYXR0ZXIobWVyZ2VkWywgYygibG9nMkZvbGRDaGFuZ2UiLCAiZGVzZXFfbG9nZmMiKV0pCmxvZ2ZjX3Bsb3QgPC0gbG9nZmNfcGxvdHRlcltbInNjYXR0ZXIiXV0gKwogIHhsYWIoIkRFU2VxMiBsb2cyRkM6IFZpc2l0IGV4cGxpY2l0bHkgaW4gbW9kZWwiKSArCiAgeWxhYigiREVTZXEyIGxvZzJGQzogRGVmYXVsdCBwYWlyd2lzZSBjb21wYXJpc29uIikgKwogIGdndGl0bGUoZ2x1ZSgiQ29tcGFyaW5nIHJlc3VsdHMgZnJvbSBtb2RlbHM6IHtwcmV0dHlOdW0oY29yX3ZhbHVlW1snZXN0aW1hdGUnXV0pfSAocGVhcnNvbikiKSkKcHAoZmlsZSA9ICJmaWd1cmVzL2NvbXBhcmVfY2ZfYW5kX3Zpc2l0X2luX21vZGVsX2Vvc2lub3BoaWxfbG9nZmMuc3ZnIikKbG9nZmNfcGxvdApkZXYub2ZmKCkKbG9nZmNfcGxvdAoKY29yX3ZhbHVlIDwtIGNvci50ZXN0KG1lcmdlZFtbInBhZGoiXV0sIG1lcmdlZFtbImRlc2VxX2FkanAiXV0sIG1ldGhvZCA9ICJzcGVhcm1hbiIpCmNvcl92YWx1ZQphZGpwX3Bsb3R0ZXIgPC0gcGxvdF9saW5lYXJfc2NhdHRlcihtZXJnZWRbLCBjKCJwYWRqIiwgImRlc2VxX2FkanAiKV0pCmFkanBfcGxvdCA8LSBhZGpwX3Bsb3R0ZXJbWyJzY2F0dGVyIl1dICsKICB4bGFiKCJERVNlcTIgYWRqcDogVmlzaXQgZXhwbGljaXRseSBpbiBtb2RlbCIpICsKICB5bGFiKCJERVNlcTIgYWRqcDogRGVmYXVsdCBwYWlyd2lzZSBjb21wYXJpc29uIikgKwogIGdndGl0bGUoZ2x1ZSgiQ29tcGFyaW5nIHJlc3VsdHMgZnJvbSBtb2RlbHM6IHtwcmV0dHlOdW0oY29yX3ZhbHVlW1snZXN0aW1hdGUnXV0pfSAoc3BlYXJtYW4pIikpCnBwKGZpbGUgPSAiaW1hZ2VzL2NvbXBhcmVfY2ZfYW5kX3Zpc2l0X2luX21vZGVsX2Vvc2lub3BoaWxfYWRqcC5zdmciKQphZGpwX3Bsb3QKZGV2Lm9mZigpCmFkanBfcGxvdAoKcHJldmlvdXNfc2lnX2lkeCA8LSBiaWdfdGFibGVbWyJkZXNlcV9hZGpwIl1dIDw9IDAuMDUgJgogIGFicyhiaWdfdGFibGVbWyJkZXNlcV9sb2dmYyJdXSA+PSAxLjApCnN1bW1hcnkocHJldmlvdXNfc2lnX2lkeCkKcHJldmlvdXNfZ2VuZXMgPC0gcm93bmFtZXMoYmlnX3RhYmxlKVtwcmV2aW91c19zaWdfaWR4XQoKbmV3X3NpZ19pZHggPC0gYWJzKGRlc2VxX3RhYmxlW1sibG9nMkZvbGRDaGFuZ2UiXV0pID49IDEuMCAmCiAgZGVzZXFfdGFibGVbWyJwYWRqIl1dIDwgMC4wNQpuZXdfZ2VuZXMgPC0gcm93bmFtZXMoZGVzZXFfdGFibGUpW25ld19zaWdfaWR4XQpuYV9pZHggPC0gaXMubmEobmV3X2dlbmVzKQpuZXdfZ2VuZXMgPC0gbmV3X2dlbmVzWyFuYV9pZHhdCgpWZW5uZXJhYmxlOjpWZW5uKGxpc3QoInByZXZpb3VzIiA9IHByZXZpb3VzX2dlbmVzLCAibmV3IiA9IG5ld19nZW5lcykpCgp0ZXN0X25ldyA8LSBzaW1wbGVfZ3Byb2ZpbGVyKG5ld19nZW5lcykKdGVzdF9uZXcKdGVzdF9vbGQgPC0gc2ltcGxlX2dwcm9maWxlcihwcmV2aW91c19nZW5lcykKdGVzdF9vbGQKCm5ld19hbm5vdGF0ZWQgPC0gbWVyZ2UoZkRhdGEodF9lb3Npbm9waGlscyksIGRlc2VxX3RhYmxlLCBieSA9ICJyb3cubmFtZXMiKQpyb3duYW1lcyhuZXdfYW5ub3RhdGVkKSA8LSBuZXdfYW5ub3RhdGVkW1siUm93Lm5hbWVzIl1dCm5ld19hbm5vdGF0ZWRbWyJSb3cubmFtZXMiXV0gPC0gTlVMTAp3cml0ZV94bHN4KGRhdGEgPSBuZXdfYW5ub3RhdGVkLCBleGNlbCA9ICJleGNlbC9lb3Npbm9waGlsX3Zpc2l0X2luX21vZGVsX3N2YV9jZl9uZXcueGxzeCIpCgpvbGRfYW5ub3RhdGVkIDwtIG1lcmdlKGZEYXRhKHRfZW9zaW5vcGhpbHMpLCBiaWdfdGFibGUsIGJ5ID0gInJvdy5uYW1lcyIpCnJvd25hbWVzKG9sZF9hbm5vdGF0ZWQpIDwtIG9sZF9hbm5vdGF0ZWRbWyJSb3cubmFtZXMiXV0Kb2xkX2Fubm90YXRlZFtbIlJvdy5uYW1lcyJdXSA8LSBOVUxMCndyaXRlX3hsc3goZGF0YSA9IG9sZF9hbm5vdGF0ZWQsIGV4Y2VsID0gImV4Y2VsL2Vvc2lub3BoaWxfdmlzaXRfaW5fbW9kZWxfc3ZhX2NmX29sZC54bHN4IikKYGBgCgpDaGVjayBvdXIgZ2VuZXMgb2YgcGFydGljdWxhciBpbnRlcmVzdAoKYGBge3J9CnN1bShuZXdfZ2VuZXMgJWluJSBleHBlY3RlZF9lbnNnKQpgYGAKCk5vdCBxdWl0ZSBhcyBzaW1pbGFyIGFzIHRoZSBtb25vY3l0ZSBkYXRhLgoKIyMgTmV1dHJvcGhpbHMKCmBgYHtyfQojIyBUaGUgb3JpZ2luYWwgcGFpcndpc2UgaW52b2NhdGlvbiB3aXRoIHN2YToKIyMgdF9jZl9uZXV0cm9waGlsX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF9uZXV0cm9waGlscywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKIyMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgZmlsdGVyID0gVFJVRSwKIyMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRlc3RfbmV1dHJvcGhpbHMgPC0gbm9ybWFsaXplX2V4cHQodF9uZXV0cm9waGlscywgZmlsdGVyID0gInNpbXBsZSIpCnRlc3RfbmV1dF9kZXNpZ24gPC0gcERhdGEodGVzdF9uZXV0cm9waGlscykKdGVzdF9mb3JtdWxhIDwtIGFzLmZvcm11bGEoIn4gMCArIGZpbmFsb3V0Y29tZSArIHZpc2l0bnVtYmVyIikKdGVzdF9tb2RlbCA8LSBtb2RlbC5tYXRyaXgodGVzdF9mb3JtdWxhLCBkYXRhID0gdGVzdF9uZXV0X2Rlc2lnbikKIyMgTm90ZSB0byBzZWxmOiBkb3VibGUtY2hlY2sgdGhhdCB0aGUgZm9sbG93aW5nIGxpbmUgaXMgY29ycmVjdC4KbnVsbF9mb3JtdWxhIDwtIGFzLmZvcm11bGEoIn4gMCArIHZpc2l0bnVtYmVyIikKIyMgbnVsbF9tb2RlbCA8LSB0ZXN0X21vZGVsWywgYygxLCAyKV0KbnVsbF9tb2RlbCA8LSBtb2RlbC5tYXRyaXgobnVsbF9mb3JtdWxhLCBkYXRhID0gdGVzdF9uZXV0X2Rlc2lnbikKCmxpbmVhcl9tdHJ4IDwtIGV4cHJzKHRlc3RfbmV1dHJvcGhpbHMpCmwyX210cnggPC0gbG9nMihsaW5lYXJfbXRyeCArIDEpCmNob3Nlbl9zdXJyb2dhdGVzIDwtIHN2YTo6bnVtLnN2KGRhdCA9IGwyX210cngsIG1vZCA9IHRlc3RfbW9kZWwpCmNob3Nlbl9zdXJyb2dhdGVzCgpzdXJyb2dhdGVfcmVzdWx0IDwtIHN2YTo6c3Zhc2VxKAogIGRhdCA9IGxpbmVhcl9tdHJ4LCBuLnN2ID0gY2hvc2VuX3N1cnJvZ2F0ZXMsIG1vZCA9IHRlc3RfbW9kZWwsIG1vZDAgPSBudWxsX21vZGVsKQptb2RlbF9hZGp1c3QgPC0gYXMubWF0cml4KHN1cnJvZ2F0ZV9yZXN1bHRbWyJzdiJdXSkKCiMjIEkgZG9uJ3QgdGhpbmsgdGhlIGZvbGxvd2luZyBpcyBhY3R1YWxseSByZXF1aXJlZCwgYnV0IGl0IGlzIHdlaXJkIHRvIGp1c3QgaGF2ZSB0aGlzCiMjIHVubmFtZWQgbWF0cml4IGhhbmdpbmdvdXQuCiMjIFNldCB0aGUgY29sdW1ucyB0byB0aGUgU1Yjcwpjb2xuYW1lcyhtb2RlbF9hZGp1c3QpIDwtIGMoIlNWMSIsICJTVjIiLCAiU1YzIiwgIlNWNCIpCiMjIFNldCB0aGUgcm93cyB0aGUgc2FtcGxlIElEcwpyb3duYW1lcyhtb2RlbF9hZGp1c3QpIDwtIHJvd25hbWVzKHBEYXRhKHRlc3RfbmV1dHJvcGhpbHMpKQoKbG9uZ2VyX21vZGVsIDwtIGFzLmZvcm11bGEoIn4gZmluYWxvdXRjb21lICsgdmlzaXRudW1iZXIgKyBTVjEgKyBTVjIgKyBTVjMgKyBTVjQiKQpuZXV0X2Rlc2lnbl9zdnMgPC0gY2JpbmQodGVzdF9uZXV0X2Rlc2lnbiwgbW9kZWxfYWRqdXN0KQpzdW1tYXJpemVkIDwtIERFU2VxMjo6REVTZXFEYXRhU2V0RnJvbU1hdHJpeChjb3VudERhdGEgPSBsaW5lYXJfbXRyeCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sRGF0YSA9IG5ldXRfZGVzaWduX3N2cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGVzaWduID0gbG9uZ2VyX21vZGVsKQpkZXNlcV9ydW4gPC0gREVTZXEyOjpERVNlcShzdW1tYXJpemVkKQpkZXNlcV90YWJsZSA8LSBhcy5kYXRhLmZyYW1lKERFU2VxMjo6cmVzdWx0cyhvYmplY3QgPSBkZXNlcV9ydW4sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbnRyYXN0ID0gYygiZmluYWxvdXRjb21lIiwgImZhaWx1cmUiLCAiY3VyZSIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmb3JtYXQgPSAiRGF0YUZyYW1lIikpCgojIyBXZSBzaG91bGQgYmUgYWJsZSB0byBkaXJlY3RseSBjb21wYXJlIHRoaXMgdG8gdGhlIHRoZSBkZXNlcSBjb2x1bW5zIGZyb20gdGhlIGFib3ZlCiMjIGRhdGEgc3RydWN0dXJlIG5hbWVkOiB0X2NmX25ldXRyb3BoaWxfdGFibGVfc3ZhCgpiaWdfdGFibGUgPC0gdF9jZl9uZXV0cm9waGlsX3RhYmxlX3N2YVtbImRhdGEiXV1bWyJvdXRjb21lIl1dCm9ubHlfZGVzZXEgPC0gYmlnX3RhYmxlWywgYygiZGVzZXFfbG9nZmMiLCAiZGVzZXFfYWRqcCIpXQptZXJnZWQgPC0gbWVyZ2UoZGVzZXFfdGFibGUsIG9ubHlfZGVzZXEsIGJ5ID0gInJvdy5uYW1lcyIpCnJvd25hbWVzKG1lcmdlZCkgPC0gbWVyZ2VkW1siUm93Lm5hbWVzIl1dCm1lcmdlZFtbIlJvdy5uYW1lcyJdXSA8LSBOVUxMCgpjb3JfdmFsdWUgPC0gY29yLnRlc3QobWVyZ2VkW1sibG9nMkZvbGRDaGFuZ2UiXV0sIG1lcmdlZFtbImRlc2VxX2xvZ2ZjIl1dKQpjb3JfdmFsdWUKbG9nZmNfcGxvdHRlciA8LSBwbG90X2xpbmVhcl9zY2F0dGVyKG1lcmdlZFssIGMoImxvZzJGb2xkQ2hhbmdlIiwgImRlc2VxX2xvZ2ZjIildKQpsb2dmY19wbG90IDwtIGxvZ2ZjX3Bsb3R0ZXJbWyJzY2F0dGVyIl1dICsKICB4bGFiKCJERVNlcTIgbG9nMkZDOiBWaXNpdCBleHBsaWNpdGx5IGluIG1vZGVsIikgKwogIHlsYWIoIkRFU2VxMiBsb2cyRkM6IERlZmF1bHQgcGFpcndpc2UgY29tcGFyaXNvbiIpICsKICBnZ3RpdGxlKGdsdWUoIkNvbXBhcmluZyByZXN1bHRzIGZyb20gbW9kZWxzOiB7cHJldHR5TnVtKGNvcl92YWx1ZVtbJ2VzdGltYXRlJ11dKX0gKHBlYXJzb24pIikpCnBwKGZpbGUgPSAiZmlndXJlcy9jb21wYXJlX2NmX2FuZF92aXNpdF9pbl9tb2RlbF9uZXV0cm9waGlsX2xvZ2ZjLnN2ZyIpCmxvZ2ZjX3Bsb3QKZGV2Lm9mZigpCmxvZ2ZjX3Bsb3QKCmNvcl92YWx1ZSA8LSBjb3IudGVzdChtZXJnZWRbWyJwYWRqIl1dLCBtZXJnZWRbWyJkZXNlcV9hZGpwIl1dLCBtZXRob2QgPSAic3BlYXJtYW4iKQpjb3JfdmFsdWUKYWRqcF9wbG90dGVyIDwtIHBsb3RfbGluZWFyX3NjYXR0ZXIobWVyZ2VkWywgYygicGFkaiIsICJkZXNlcV9hZGpwIildKQphZGpwX3Bsb3QgPC0gYWRqcF9wbG90dGVyW1sic2NhdHRlciJdXSArCiAgeGxhYigiREVTZXEyIGFkanA6IFZpc2l0IGV4cGxpY2l0bHkgaW4gbW9kZWwiKSArCiAgeWxhYigiREVTZXEyIGFkanA6IERlZmF1bHQgcGFpcndpc2UgY29tcGFyaXNvbiIpICsKICBnZ3RpdGxlKGdsdWUoIkNvbXBhcmluZyByZXN1bHRzIGZyb20gbW9kZWxzOiB7cHJldHR5TnVtKGNvcl92YWx1ZVtbJ2VzdGltYXRlJ11dKX0gKHNwZWFybWFuKSIpKQpwcChmaWxlID0gImltYWdlcy9jb21wYXJlX2NmX2FuZF92aXNpdF9pbl9tb2RlbF9uZXV0cm9waGlsX2FkanAuc3ZnIikKYWRqcF9wbG90CmRldi5vZmYoKQphZGpwX3Bsb3QKCnByZXZpb3VzX3NpZ19pZHggPC0gYmlnX3RhYmxlW1siZGVzZXFfYWRqcCJdXSA8PSAwLjA1ICYKICBhYnMoYmlnX3RhYmxlW1siZGVzZXFfbG9nZmMiXV0gPj0gMS4wKQpzdW1tYXJ5KHByZXZpb3VzX3NpZ19pZHgpCnByZXZpb3VzX2dlbmVzIDwtIHJvd25hbWVzKGJpZ190YWJsZSlbcHJldmlvdXNfc2lnX2lkeF0KCm5ld19zaWdfaWR4IDwtIGFicyhkZXNlcV90YWJsZVtbImxvZzJGb2xkQ2hhbmdlIl1dKSA+PSAxLjAgJgogIGRlc2VxX3RhYmxlW1sicGFkaiJdXSA8IDAuMDUKbmV3X2dlbmVzIDwtIHJvd25hbWVzKGRlc2VxX3RhYmxlKVtuZXdfc2lnX2lkeF0KbmFfaWR4IDwtIGlzLm5hKG5ld19nZW5lcykKbmV3X2dlbmVzIDwtIG5ld19nZW5lc1shbmFfaWR4XQoKVmVubmVyYWJsZTo6VmVubihsaXN0KCJwcmV2aW91cyIgPSBwcmV2aW91c19nZW5lcywgIm5ldyIgPSBuZXdfZ2VuZXMpKQoKdGVzdF9uZXcgPC0gc2ltcGxlX2dwcm9maWxlcihuZXdfZ2VuZXMpCnRlc3RfbmV3CnRlc3Rfb2xkIDwtIHNpbXBsZV9ncHJvZmlsZXIocHJldmlvdXNfZ2VuZXMpCnRlc3Rfb2xkCgpuZXdfYW5ub3RhdGVkIDwtIG1lcmdlKGZEYXRhKHRfbmV1dHJvcGhpbHMpLCBkZXNlcV90YWJsZSwgYnkgPSAicm93Lm5hbWVzIikKcm93bmFtZXMobmV3X2Fubm90YXRlZCkgPC0gbmV3X2Fubm90YXRlZFtbIlJvdy5uYW1lcyJdXQpuZXdfYW5ub3RhdGVkW1siUm93Lm5hbWVzIl1dIDwtIE5VTEwKd3JpdGVfeGxzeChkYXRhID0gbmV3X2Fubm90YXRlZCwgZXhjZWwgPSAiZXhjZWwvbmV1dHJvcGhpbF92aXNpdF9pbl9tb2RlbF9zdmFfY2ZfbmV3Lnhsc3giKQoKb2xkX2Fubm90YXRlZCA8LSBtZXJnZShmRGF0YSh0X25ldXRyb3BoaWxzKSwgYmlnX3RhYmxlLCBieSA9ICJyb3cubmFtZXMiKQpyb3duYW1lcyhvbGRfYW5ub3RhdGVkKSA8LSBvbGRfYW5ub3RhdGVkW1siUm93Lm5hbWVzIl1dCm9sZF9hbm5vdGF0ZWRbWyJSb3cubmFtZXMiXV0gPC0gTlVMTAp3cml0ZV94bHN4KGRhdGEgPSBvbGRfYW5ub3RhdGVkLCBleGNlbCA9ICJleGNlbC9uZXV0cm9waGlsX3Zpc2l0X2luX21vZGVsX3N2YV9jZl9vbGQueGxzeCIpCmBgYAoKT25jZSBhZ2Fpbiwgc2VlIGhvdyBtYW55IG9mIG91ciBmYXZvcml0ZSBnZW5lcyBhcmUgaGVyZQoKYGBge3J9CnN1bShuZXdfZ2VuZXMgJWluJSBleHBlY3RlZF9lbnNnKQpgYGAKCiMgTWl4ZWQgbGluZWFyIG1vZGVscwoKV2hlbiB0aGUgYWJvdmUgd29yayB3YXMgcmV2aWV3ZWQgZm9yIHB1YmxpY2F0aW9uLCBvbmUgY29uY2VybiByYWlzZWQKYXJvc2UgYmVjYXVzZSB3ZSBhcmUgbm90IGNvbnNpZGVyaW5nIHRoZSB2YXJpYW5jZSBvZiBlYWNoIHBlcnNvbiBpbgp0aGUgY29udHJhc3RzIGFib3ZlIGFuZCBhcmUgcG90ZW50aWFsbHkgb3Zlci1yZXByZXNlbnRpbmcgdGhlCnNpZ25pZmljYW5jZS9wb3dlciBvZiB0aGUgcmVzdWx0cyBiZWNhdXNlIHRoZSBtb2RlbHMgd2UgYXJlIHVzaW5nIGRvCm5vdCBpbmNsdWRlIHRoZSBkb25vci4gIE15IHByZXZpb3VzIHVuZGVyc3RhbmRpbmcgd2FzIHRoYXQgaXQgaXMKc3VmZmljaWVudCB0byBpbmNsdWRlIHZpc2l0IGluIHRoZSBtb2RlbCBiZWNhdXNlIHRoYXQgd291bGQgcmVzdWx0IGluCmEgbW9kZWwgbWF0cml4IHdoaWNoIHNlcGFyYXRlcyBzYW1wbGVzIGZyb20gZWFjaCBwZXJzb247IGJ1dCBJIGFtIG5vdwpyZWFzb25hYmx5IGNlcnRhaW4gdGhpcyBpcyBpbmNvcnJlY3QuCgpUaGVyZWZvcmUsIHRoZSBwcmV2aW91cyBjb3VwbGUgb2YgYmxvY2tzIEkgbm93IHRoaW5rIGFyZSBub3QKYXBwcm9hY2hpbmcgdGhpcyBwcm9ibGVtIGNvcnJlY3RseS4gV2Ugc3BlbnQgc29tZSB0aW1lIHRhbGtpbmcgd2l0aApOZWFsIGFuZCBkaXNjdXNzaW5nIHRoZSB2YXJpb3VzIG1vZGVscyBhbmQgbWV0aG9kcyB3ZSBlbXBsb3llZC4gIEhlCm1hZGUgYSBzZXJpZXMgb2Ygc3VnZ2VzdGlvbnMgYWJvdXQgd2F5cyB3aGljaCBtaWdodCBwcm92ZSBtb3JlCmNvcnJlY3QuICBJdCBzZWVtcyB0aGF0IGEgbWl4ZWQgbGluZWFyIG1vZGVsIGlzIHRoZSBtb3N0IGFwcHJvcHJpYXRlCm1ldGhvZCBmb3IgdGhpcyB0eXBlIG9mIHF1ZXJ5LiAgSSB0aGluayBJIGNhbiBwZXJmb3JtIHRoYXQgd2l0aCBsaW1tYSwKdmlhIHZvb20uIExldCB1cyB0cnkgYW5kIHNlZSB3aGF0IGhhcHBlbnMuICBBZnRlciBkb2luZyBzb21lIHJlYWRpbmcsCkkgdGhpbmsgdGhlIG1vc3QgYXBwcm9wcmlhdGUgd2F5IHRvIHBlcmZvcm0gdGhpcyBpcyB0byB1c2UgZHJlYW0oKSBmcm9tCnZhcmlhbmNlUGFyaXRpb24sIHdoaWNoIGlzIGNvb2wgYmVjYXVzZSBJIHJlYWxseSBsaWtlIGl0LgoKQXMgSSB3cml0ZSB0aGlzLCB3ZSBhcmUgcmVhc29uYWJseSBjZXJ0YWluIHRoYXQgYSBtaXhlZApsaW5lYXIgbW9kZWwgcHJvdmlkZXMgYSBzdGF0aXN0aWNhbGx5IGNvcnJlY3QgZnJhbWV3b3JrIGZvcgpyZXByZXNlbnRpbmcgb3VyIGV4cHJlc3Npb24gZGF0YSBhcyBhIGZ1bmN0aW9uIG9mIGZpbmFsb3V0Y29tZSwgdmlzaXQsCmFuZCBwZXJzb24sIGUuZzoKCmV4cHJzIH4gZmluYWxvdXRjb21lICsgdmlzaXQgKyAoMXxkb25vcikKCkluIG91ciBkaXNjdXNzaW9ucyBzdXJyb3VuZGluZyB0aGUgdmFyaW91cyB3YXlzIHRvIGNvbXBhcmUvY29udHJhc3QKdGhlIHZhcmlvdXMgcmVzdWx0cyB3aXRoL291dCB0aGUgbWl4ZWQgbGluZWFyIG1vZGVsOyB0aGVyZSB3ZXJlIGEgZmV3CnByaW1hcnkgZ29hbHMgbGFpZCBvdXQgYnkgTWFyaWEgQWRlbGFpZGEgYW5kIE5lYWwuICBUaGUgZ29hbCBpcyB0bwpvYnNlcnZlIGlmL2hvdyB3ZWxsIG91ciBwcmV2aW91cyBhbmFseXNlcyBhZ3JlZSB3aXRoIHJlc3VsdHMgb2J0YWluZWQKdXNpbmcgYSBtaXhlZCBsaW5lYXIgbW9kZWwuICBUaGVyZSBhcmUgYSBjb3VwbGUgb2YgY2F2ZWF0czoKCjEuICBUaGUgbWxtIGlzIG5vdCBhdmFpbGFibGUgZm9yIGRhdGEgaW4gYSBuZWdhdGl2ZSBiaW5vbWlhbAogICAgZGlzdHJpYnV0aW9uLiAgRXJnbywgREVTZXEyL0VkZ2VSIGFyZSBvdXQgYSBwcmlvcmkuICBUaGlzIGlzIGEKICAgIGxpdHRsZSBzYWQgYmVjYXVzZSB3ZSBoYXZlIGdlbmVyYWxseSByZWxpZWQgdXBvbiBERVNlcTIgcmVzdWx0cy4KICAgIEhvd2V2ZXIsIEkgZG8gcm91dGluZWx5IGNvbXBhcmUgREVTZXEyIHRvIHZvb20tPmxpbW1hIGFuZCBhbQogICAgdXN1YWxseSBpbXByZXNzZWQgYXQgdGhlIGRlZ3JlZSBvZiBzaW1pbGFyaXR5LgoyLiAgbWxtIGFuYWx5c2VzIGFyZSBzaWduaWZpY2FudGx5IG1vcmUgY29tcHV0YXRpb25hbGx5IGV4cGVuc2l2ZS4KICAgIFdoZW4gSSBoYXZlIHBsYXllZCB3aXRoIHRoZW0gdmlhIHZhcmlhbmNlUGFydGl0aW9uIGluIHRoZSBwYXN0IEkKICAgIGhhdmUgcnVuIG15IHZlcnkgbmljZSBtYWNoaW5lIE9vTSBvbiBtb3JlIHRoYW4gYSBmZXcgb2NjYXNpb25zLgogICAgVGhpcyBpcyBpbXBvcnRhbnQsIGJlY2F1c2UgSSB3YW50IHRvIGhhdmUgZXZlcnl0aGluZyBpbiBteQogICAgY29udGFpbmVyLCBidXQgSSBjYW5ub3QgZXhwZWN0IGFueSBlbHNlJ3MgY29tcHV0ZXIgdG8gaGF2ZSA+IDIwMEcKICAgIFJBTS4gIEkgY2FuIGRlZmluaXRlbHkgbG93ZXIgdGhlIHBhcmFsbGVsIHByb2Nlc3NpbmcgcmVxdWlyZW1lbnRzCiAgICB0byBzYXZlIG1lbW9yeSwgYnV0IHRoZW4gdGhlc2Ugd2lsbCB0YWtlIGZvcmV2ZXIgKHdlbGwsIHByb2JhYmx5IGEKICAgIGNvdXBsZSBkYXlzIHRvIGEgd2VlaykuCgpTbywgd2l0aCB0aGF0IGluIG1pbmQsIE1hcmlhIEFkZWxhaWRhLCBOYWppYiwgYW5kIE5lYWwgZm9jdXNlZCBvbgpyZXBlYXRpbmcgYSB1c2VmdWwgc3Vic2V0IG9mIHRoZSBhbmFseXNlcyB1c2luZyB0aGUgbWxtIGFuZCBjb21wYXJpbmcKdGhlbSB0byBvdXIgZXh0YW50IHJlc3VsdHMgcmF0aGVyIHRoYW4gcmUtaW1wbGVtZW50aW5nIGV2ZXJ5dGhpbmcuClRoZSBmb2xsb3dpbmcgYXJlIHRoZSB0aGluZ3MgdGhleSBzdWdnZXN0ZWQgYXJlIHRoZSBtb3N0IGltcG9ydGFudApjb21wYXJpc29uIHBvaW50czoKCjEuICBSZXBlYXQgdGhpcyBwcm9jZXNzLCBjbGVhbiBpdCB1cCBmb3I6IG1vbm9jeXRlcy9uZXV0cm9waGlscwoyLiAgQ29tcGFyZSB0aGUgcmVzdWx0cyB3aGVuIHVzaW5nIG1vZGVscyB3aGljaCBhcmUgKG5vdGUgdGhhdCB0aGlzCiAgICB3YXkgb2Ygd3JpdGluZyBmaXhlcyB0aGUgc2xvcGUgb2YgZWFjaCBkb25vcidzIG1vZGVsIGJ1dCBhbGxvd3MKICAgIHRoZSBpbnRlcmNlcHQgdG8gY2hhbmdlKToKICAgIGEuICB+IGZpbmFsb3V0Y29tZSArIHZpc2l0bnVtYmVyICsgKDF8ZG9ub3IpCiAgICBiLiAgfiBmaW5hbG91dGNvbWUgKyB2aXNpdG51bWJlcgogICAgYy4gIH4gZmluYWxvdXRjb21lICsgKDF8ZG9ub3IpCjMuICBDb21wYXJlIHRoZSByZXN1bHRzIGZyb20gbGltbWEgZm9yIGEsYixjIChyZWFsbHksIHRoZXkgYXNrZWQgbWUgdG8KICAgIG9ubHkgZm9jdXMgb24gYSxiOyBJIHdhbnRlZCB0byBjb21wYXJlIGMgYXMgd2VsbCkKNC4gIEV4dHJhY3QgdGhlIHNldCBvZiAnc2lnbmlmaWNhbnQnIGdlbmVzIHZpYSBsb2dGQy9wdmFsdWUgZm9yIGFsbCBvZgogICAgdGhlIGFib3ZlIGFuZCBzZWUgdGhlIHNoYXJlZC91bmlxdWUgZ2VuZXMuCgpJIGhhdmUgYWxyZWFkeSB3cml0dGVuIGEgc2tlbGV0b24gZnVuY3Rpb24gJ2RyZWFtX3BhaXJ3aXNlKCknIGFzIGEKc2libGluZyB0byBteSBvdGhlciAqX3BhaXJ3aXNlKCkgZnVuY3Rpb25zLiAgSSB0aGluayB0aGF0IHdpdGggc29tZQptaW5vciBtb2RpZmljYXRpb25zIChvciBtYXliZSBub25lIGF0IGFsbCwgd2hlbiBJIHdyb3RlIGl0IEkgd2FzCnRoaW5raW5nIGFib3V0IGZ1biBtb2RlbHMgdGhhdCB2YXJpYW5jZVBhcnRpdGlvbiBzdXBwb3J0cykgaXQgY2FuCmFjY2VwdCB0aGUgbWl4ZWQgbGluZWFyIG1vZGVsIG9mIGludGVyZXN0LgoKIyMgVXNpbmcgYSBtaXhlZCBsaW5lYXIgbW9kZWwgd2l0aCBkcmVhbQoKSW4gdGhlIGZvbGxvd2luZyBibG9jaywgdGhlIG1peGVkIGZvcm11bGEgd2lsbCBnZXQgcGFzc2VkIHRvIGRyZWFtLiAgSQpzZXQgdGhlIGNvZGUgdG8gdXNlIHRoZSBmaXJzdCBlbGVtZW50IChhZnRlciB0aGUgaW50ZXJjZXB0KSBhcyB0aGUKJ2NvbmRpdGlvbicgZmFjdG9yLiAgVGh1cyBpZiBJIGhhZCBtYWRlIHRoZSBtb2RlbCAnfiAwICsgdmlzaXRudW1iZXIgKwpmaW5hbG91dGNvbWUgKyAoMXxkb25vciknLCBpdCB3b3VsZCBjb21wYXJlIHZpc2l0cy4KClRoZSBkcmVhbV9wYWlyd2lzZSgpIGZ1bmN0aW9uIGlzIHJlc3BvbnNpYmxlIGZvciBtYWtpbmcgc3VyZSB0aGUKdmFyaWFuY2VQYXJ0aXRpb24gcmVwbGFjZW1lbnQgZnVuY3Rpb25zIGFyZSB1c2VkIGZvciB0aGluZ3MgbGlrZSB2b29tLApsbWZpdCwgZWJheWVzLCBhbmQgdG9wdGFibGUuICBTdHJhbmdlbHksIHNvbWUgb2YgdGhlbSB3aWxsCmF1dG9tYXRpY2FsbHkgZmFsbCBiYWNrIHRvIGxpbW1hJ3MgZnVuY3Rpb25zIGlmIHRoZXJlIGlzIG5vCnJhbmRvbS1lZmZlY3QgaW4gdGhlIG1vZGVsLCBidXQgb3RoZXJzIHdpbGwgbm90LiAgQXMgYSByZXN1bHQsIEkgaGF2ZQphIGNoZWNrIGFuZCBpbnZva2UgdGhlIGFwcHJvcHJpYXRlIGZ1bmN0aW9ucyBleHBsaWNpdGx5IGluCmRyZWFtX3BhaXJ3aXNlKCkuCgpgYGB7cn0KbWl4ZWRfZnN0cmluZyA8LSAifiAwICsgZmluYWxvdXRjb21lICsgdmlzaXRudW1iZXIgKyAoMXxkb25vcikiCm1peGVkX2Zvcm0gPC0gYXMuZm9ybXVsYShtaXhlZF9mc3RyaW5nKQpnZXRfZm9ybXVsYV9mYWN0b3JzKG1peGVkX2Zvcm0pCnRfZW9zaW5vcGhpbF9taXhlZCA8LSBzZXRfZXhwdF9jb25kaXRpb25zKHRfZW9zaW5vcGhpbHMsIGZhY3QgPSAiZmluYWxvdXRjb21lIikKbWl4ZWRfZW9zaW5vcGhpbF9kZSA8LSBkcmVhbV9wYWlyd2lzZSh0X2Vvc2lub3BoaWxfbWl4ZWQsIGFsdF9tb2RlbCA9IG1peGVkX2Zvcm0pCm1peGVkX2Vvc2lub3BoaWxfZGVfeGxzeCA8LSB3cml0ZV9kZV90YWJsZShtaXhlZF9lb3Npbm9waGlsX2RlLCB0eXBlID0gImxpbW1hIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZSgiZXhjZWwvbWl4ZWRfZW9zaW5vcGhpbF90YWJsZS12e3Zlcn0ueGxzeCIpKQoKdF9tb25vY3l0ZV9taXhlZCA8LSBzZXRfZXhwdF9jb25kaXRpb25zKHRfbW9ub2N5dGVzLCBmYWN0ID0gImZpbmFsb3V0Y29tZSIpCm1peGVkX21vbm9jeXRlX2RlIDwtIGRyZWFtX3BhaXJ3aXNlKHRfbW9ub2N5dGVfbWl4ZWQsIGFsdF9tb2RlbCA9IG1peGVkX2Zvcm0pCm1peGVkX21vbm9jeXRlX2RlX3hsc3ggPC0gd3JpdGVfZGVfdGFibGUobWl4ZWRfbW9ub2N5dGVfZGUsIHR5cGUgPSAibGltbWEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZSgiZXhjZWwvbWl4ZWRfbW9ub2N5dGVfdGFibGUtdnt2ZXJ9Lnhsc3giKSkKCnRfbmV1dHJvcGhpbF9taXhlZCA8LSBzZXRfZXhwdF9jb25kaXRpb25zKHRfbmV1dHJvcGhpbHMsIGZhY3QgPSAiZmluYWxvdXRjb21lIikKbWl4ZWRfbmV1dHJvcGhpbF9kZSA8LSBkcmVhbV9wYWlyd2lzZSh0X25ldXRyb3BoaWxfbWl4ZWQsIGFsdF9tb2RlbCA9IG1peGVkX2Zvcm0pCm1peGVkX25ldXRyb3BoaWxfZGVfeGxzeCA8LSB3cml0ZV9kZV90YWJsZShtaXhlZF9uZXV0cm9waGlsX2RlLCB0eXBlID0gImxpbW1hIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZSgiZXhjZWwvbWl4ZWRfbmV1dHJvcGhpbF90YWJsZS12e3Zlcn0ueGxzeCIpKQpgYGAKCiMjIFVzaW5nIHRoZSBzYW1lIG1ldGhvZCB3aXRob3V0IHRoZSBtaXhlZCBtb2RlbAoKSW4gb3RoZXIgd29yZHMsIHRoZSBmb2xsb3dpbmcgaW52b2NhdGlvbnMgd2lsbCBnbyBfbXVjaF8gZmFzdGVyIGFuZApsaWtlbHkgYmUgbmVhcmx5IChvciBjb21wbGV0ZWx5KSBpZGVudGljYWwgdG8gdGhlIHJlc3VsdHMgZnJvbSBsaW1tYQp1c2luZyB0aGUgc2FtZSBtb2RlbCBzaW5jZSB0aGUgJ21peGVkX2ZzdHJpbmdfZnYnIGRvZXMgbm90IGhhdmUgYQpyYW5kb20gZWZmZWN0LgoKYGBge3J9Cm1peGVkX2ZzdHJpbmdfZnYgPC0gIn4gMCArIGZpbmFsb3V0Y29tZSArIHZpc2l0bnVtYmVyIgptaXhlZF9mb3JtX2Z2IDwtIGFzLmZvcm11bGEobWl4ZWRfZnN0cmluZ19mdikKZ2V0X2Zvcm11bGFfZmFjdG9ycyhtaXhlZF9mb3JtX2Z2KQptaXhlZF9lb3Npbm9waGlsX2Z2X2RlIDwtIGRyZWFtX3BhaXJ3aXNlKHRfZW9zaW5vcGhpbF9taXhlZCwgYWx0X21vZGVsID0gbWl4ZWRfZm9ybV9mdikKbWl4ZWRfZW9zaW5vcGhpbF9kZV9ub2Rvbm9yX3hsc3ggPC0gd3JpdGVfZGVfdGFibGUobWl4ZWRfZW9zaW5vcGhpbF9mdl9kZSwgdHlwZSA9ICJsaW1tYSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZSgiZXhjZWwvbWl4ZWRfZW9zaW5vcGhpbF9ub2Rvbm9yX3RhYmxlLXZ7dmVyfS54bHN4IikpCgptaXhlZF9tb25vY3l0ZV9mdl9kZSA8LSBkcmVhbV9wYWlyd2lzZSh0X21vbm9jeXRlX21peGVkLCBhbHRfbW9kZWwgPSBtaXhlZF9mb3JtX2Z2KQptaXhlZF9tb25vY3l0ZV9kZV9ub2Rvbm9yX3hsc3ggPC0gd3JpdGVfZGVfdGFibGUobWl4ZWRfbW9ub2N5dGVfZnZfZGUsIHR5cGUgPSAibGltbWEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlKCJleGNlbC9taXhlZF9tb25vY3l0ZV9ub2Rvbm9yX3RhYmxlLXZ7dmVyfS54bHN4IikpCgptaXhlZF9uZXV0cm9waGlsX2Z2X2RlIDwtIGRyZWFtX3BhaXJ3aXNlKHRfbmV1dHJvcGhpbF9taXhlZCwgYWx0X21vZGVsID0gbWl4ZWRfZm9ybV9mdikKbWl4ZWRfbmV1dHJvcGhpbF9kZV9ub2Rvbm9yX3hsc3ggPC0gd3JpdGVfZGVfdGFibGUobWl4ZWRfbmV1dHJvcGhpbF9mdl9kZSwgdHlwZSA9ICJsaW1tYSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZSgiZXhjZWwvbWl4ZWRfbmV1dHJvcGhpbF9ub2Rvbm9yX3RhYmxlLXZ7dmVyfS54bHN4IikpCmBgYAoKIyMgQ29tcGFyaW5nIHRoZSByZXN1bHRzCgpUaGVyZSBhcmUgYSBjb3VwbGUgb2JzZXJ2YXRpb25zIGhlcmUgd2hpY2ggYXJlIGltcG9ydGFudCBhbmQvb3IKdHJvdWJsaW5nOgoKMS4gIFVzaW5nIHRoZSBtbG0gcmVzdWx0cyBpbiBubyBnZW5lcyB3aXRoIGEgc2lnbmlmaWNhbnQgRkRSIGFkanVzdGVkCiAgICBwLXZhbHVlLiAgVGhpcyBzdXBwb3J0cyB0aGUgaHlwb3RoZXNpcyB0aGF0IHdlIG92ZXItcmVwcmVzZW50ZWQKICAgIHRoZSBzaWduaWZpY2FuY2Ugb2YgdGhlIGRhdGEgaW4gb3VyIG9yaWdpbmFsIGFuYWx5c2lzIEkgdGhpbmsgaW4gYQogICAgcHJldHR5IGNvbXBlbGxpbmcgZmFzaGlvbi4KMi4gIEhvd2V2ZXIsIHRoZXJlIGlzIHRoaXMgaW50ZXJlc3Rpbmcgbm90ZSBmcm9tIHRoZSBkcmVhbQogICAgZG9jdW1lbnRhdGlvbjogICJTaW5jZSBkcmVhbSB1c2VzIGFuIGVzdGltYXRlZCBkZWdyZWVzIG9mIGZyZWVkb20KICAgIHZhbHVlIGZvciBlYWNoIGh5cG90aGVzaXMgdGVzdCwgdGhlIGRlZ3JlZXMgb2YgZnJlZWRvbSBpcwogICAgZGlmZmVyZW50IGZvciBlYWNoIGdlbmUgaGVyZS4gVGhlcmVmb3JlLCB0aGUgdC1zdGF0aXN0aWNzIGFyZSBub3QKICAgIGRpcmVjdGx5IGNvbXBhcmFibGUgc2luY2UgdGhleSBoYXZlIGRpZmZlcmVudCBkZWdyZWVzIG9mCiAgICBmcmVlZG9tLiBJbiBvcmRlciB0byBiZSBhYmxlIHRvIGNvbXBhcmUgdGVzdCBzdGF0aXN0aWNzLCB3ZSByZXBvcnQKICAgIHouc3RkIHdoaWNoIGlzIHRoZSBwLXZhbHVlIHRyYW5zZm9ybWVkIGludG8gYSBzaWduZWQgei1zY29yZS4KICAgIFRoaXMgY2FuIGJlIHVzZWQgZm9yIGRvd25zdHJlYW0gYW5hbHlzaXMuIgozLiAgSSBzcGVudCBzb21lIHRpbWUgcmVhZGluZyB0aGUgUiBtYXJrZG93biBkb2N1bWVudHMgYXQKICAgIGh0dHBzOi8vZ2l0aHViLmNvbS9HYWJyaWVsSG9mZm1hbi9kcmVhbV9hbmFseXNpcy5naXQgd2hpY2gKICAgIGFjY29tcGFueSB0aGUgcGFwZXIgKEBob2ZmbWFuRHJlYW1Qb3dlcmZ1bERpZmZlcmVudGlhbDIwMjEpIGFuZAogICAgZm91bmQgdGhhdCB0aGVyZSBpcyBvbmx5IG9uZSBpbnN0YW5jZSBpbiB3aGljaCB0aGV5IG1ha2UgdXNlIG9mCiAgICBhZGp1c3RlZCBwLXZhbHVlczsgYXQgdGhlIHZlcnkgZW5kIG9mIHRoZSBpUFNDIGRhdGEuICBJbiBhZGRpdGlvbgogICAgdGhleSBvbmx5IHVzZSB0aGUgenN0ZCBtZXRyaWMgd2hlbiBwdWxsaW5nIGdlbmUgc2V0cyBmb3IgY29tcGFyaW5nCiAgICBhZ2FpbnN0IEdPIGNhdGVnb3JpZXMuICBJbiBhbGwgb3RoZXIgaW5zdGFuY2VzLCB0aGUgbWV0cmljIHVzZWQKICAgIGZvciBzaWduaWZpY2FuY2UgaXMgdGhlICdyYXcnIHAtdmFsdWUuCgojIyMgQSBsaXR0bGUgZnVuY3Rpb24gdG8gcHJpbnQgb3ZlcmxhcHMKCk5hamliIGFza2VkIGlmIEkgd291bGQgY29tcGFyZSB0aGUgc2V0IG9mIG92ZXJsYXBwaW5nIGdlbmVzIG9ic2VydmVkCndpdGggdGhlIHZhcmlvdXMgc2lnbmlmaWNhbmNlIG1ldHJpY3MgcHJvdmlkZWQuICBJIHRoaW5rIEkgc2hvdWxkCndyaXRlIGEgbGl0dGxlIGZ1bmN0aW9uIHRvIGRvIHRoaXMgYmVjYXVzZSB0aGVyZSBhcmUgYW1wbGUKb3Bwb3J0dW5pdGllcyBmb3IgdHlwZW9zLgoKYGBge3J9CmRlc2VxX2RmIDwtIHRfY2ZfbW9ub2N5dGVfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0KZGVzZXFfZ2VuZV9pZHggPC0gYWJzKGRlc2VxX2RmW1siZGVzZXFfbG9nZmMiXV0pID49IDEuMCAmCiAgZGVzZXFfZGZbWyJkZXNlcV9hZGpwIl1dIDw9IDAuMDUKZGVzZXFfc3ltYiA8LSBhbm5vdFtkZXNlcV9nZW5lX2lkeCwgImhnbmNfc3ltYm9sIl0KZGVzZXFfc3ltYgpkZXNlcV9nZW5lcyA8LSByb3duYW1lcyhhbm5vdClbZGVzZXFfZ2VuZV9pZHhdCgpvdmVybGFwX3NpZyA8LSBmdW5jdGlvbihtaXhlZCwgZGVzZXEgPSBkZXNlcV9nZW5lcywgbWl4ZWRfcGNvbCA9ICJQLlZhbHVlIiwKICAgICAgICAgICAgICAgICAgICAgICAgYW5ub3QgPSBmRGF0YSh0X21vbm9jeXRlcyksIG1peGVkX2N1dG9mZiA9IDAuMDUsIGRpcmVjdGlvbiA9ICJsdCIsCiAgICAgICAgICAgICAgICAgICAgICAgIGV4cGVjdGVkID0gZXhwZWN0ZWRfZ2VuZXMpIHsKICBpZiAoZGlyZWN0aW9uID09ICJsdCIpIHsKICAgIG1peGVkX3NpZ19pZHggPC0gYWJzKG1peGVkW1sibG9nRkMiXV0pID49IDEuMCAmCiAgICAgIG1peGVkW1ttaXhlZF9wY29sXV0gPD0gbWl4ZWRfY3V0b2ZmCiAgfSBlbHNlIHsKICAgIG1peGVkX3NpZ19pZHggPC0gYWJzKG1peGVkW1sibG9nRkMiXV0pID49IDEuMCAmCiAgICAgIG1peGVkW1ttaXhlZF9wY29sXV0gPj0gbWl4ZWRfY3V0b2ZmCiAgfQogIG1peGVkX2dlbmVzIDwtIHJvd25hbWVzKG1peGVkKVttaXhlZF9zaWdfaWR4XQogIHZlbm5fbHN0IDwtIGxpc3QoCiAgICAibWl4ZWRfbW9kZWwiID0gbWl4ZWRfZ2VuZXMsCiAgICAiREVTZXFfc3ZhIiA9IGRlc2VxKQogIG1peGVkX2Rlc2VxX2NvbXAgPC0gVmVubmVyYWJsZTo6VmVubih2ZW5uX2xzdCkKICBWZW5uZXJhYmxlOjpwbG90KG1peGVkX2Rlc2VxX2NvbXApCiAgbWl4ZWRfZW5zZyA8LSBtaXhlZF9kZXNlcV9jb21wQEludGVyc2VjdGlvblNldHNbWyIxMSJdXQogIG92ZXJsYXBfZ2VuZXMgPC0gYW5ub3RbbWl4ZWRfZW5zZywgImhnbmNfc3ltYm9sIl0KICBtZXNzYWdlKCJUaGUgc2V0IG9mIGFsbCBvdmVybGFwcGluZyBnZW5lczoiKQogIHByaW50KG92ZXJsYXBfZ2VuZXMpCiAgZm91bmRfaWR4IDwtIGV4cGVjdGVkICVpbiUgb3ZlcmxhcF9nZW5lcwogIG1lc3NhZ2UoIk92ZXJsYXBwaW5nIGdlbmVzIGluIHRoZSAxMCBmYXZvcml0ZXM6IikKICBwcmludChleHBlY3RlZFtmb3VuZF9pZHhdKQp9CmBgYAoKIyMjIE1vbm9jeXRlcwoKSW4gdGhpcyBibG9jayBJIGFtIGxvb2tpbmcgYXQgdGhlIHNpbWlsYXJpdGllcyBiZXR3ZWVuIHRoZSBtaXhlZCBtb2RlbAp3aXRoIGRvbm9yIGFuZCB3aXRob3V0IGRvbm9yICh3aGljaCBpcyBubyBsb25nZXIgYSBtaXhlZCBtb2RlbDsgaXQgaXMKanVzdCB1c2luZyB0aGUgZHJlYW0gZnVuY3Rpb25zICh3aGljaCBJIGFtIHByZXR0eSBzdXJlIGp1c3QgZmFsbCBiYWNrCnRvIGxpbW1hIHdoZW4gdGhlcmUgaXMgbm90IGEgcmFuZG9tIGVmZmVjdCkpLgoKYGBge3J9Cm1vbm9jeXRlX3Zpc2l0X3dpdGhfZG9ub3IgPC0gbWl4ZWRfbW9ub2N5dGVfZGUkYWxsX3RhYmxlcyRjb250cmFzdHNbWzFdXQptb25vY3l0ZV92aXNpdF93aXRob3V0X2Rvbm9yIDwtIG1peGVkX21vbm9jeXRlX2Z2X2RlJGFsbF90YWJsZXMkY29udHJhc3RzW1sxXV0KZG9ub3JfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyhtb25vY3l0ZV92aXNpdF93aXRoX2Rvbm9yLCBtb25vY3l0ZV92aXNpdF93aXRob3V0X2Rvbm9yLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB4ID0gImFkai5QLlZhbCIsIHB5ID0gImFkai5QLlZhbCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbHggPSAibG9nRkMiLCBseSA9ICJsb2dGQyIpCmRvbm9yX2F1Y2MKCndpdGhfZG9ub3JfZ2VuZXMgPC0gYWJzKG1vbm9jeXRlX3Zpc2l0X3dpdGhfZG9ub3JbWyJsb2dGQyJdXSkgPj0gMS4wICYKICBtb25vY3l0ZV92aXNpdF93aXRoX2Rvbm9yW1siUC5WYWx1ZSJdXSA8PSAwLjA1CndpdGhvdXRfZG9ub3JfZ2VuZXMgPC0gYWJzKG1vbm9jeXRlX3Zpc2l0X3dpdGhvdXRfZG9ub3JbWyJsb2dGQyJdXSkgPj0gMS4wICYKICBtb25vY3l0ZV92aXNpdF93aXRoX2Rvbm9yW1siUC5WYWx1ZSJdXSA8PSAwLjA1CmRvbm9yX2dlbmVzIDwtIHJvd25hbWVzKG1vbm9jeXRlX3Zpc2l0X3dpdGhfZG9ub3IpW3dpdGhfZG9ub3JfZ2VuZXNdCmRvbm9yX3pfaWR4IDwtIGFicyhtb25vY3l0ZV92aXNpdF93aXRoX2Rvbm9yW1sibG9nRkMiXV0pID49IDEuMCAmCiAgbW9ub2N5dGVfdmlzaXRfd2l0aF9kb25vcltbInouc3RkIl1dID49IDEuMApkb25vcl96X2dlbmVzIDwtIHJvd25hbWVzKG1vbm9jeXRlX3Zpc2l0X3dpdGhfZG9ub3IpW2Rvbm9yX3pfaWR4XQoKb3ZlcmxhcF9zaWcobW9ub2N5dGVfdmlzaXRfd2l0aF9kb25vcikKb3ZlcmxhcF9zaWcobW9ub2N5dGVfdmlzaXRfd2l0aF9kb25vciwKICAgICAgICAgICAgbWl4ZWRfcGNvbCA9ICJ6LnN0ZCIsIGRpcmVjdGlvbiA9ICJndCIsIG1peGVkX2N1dG9mZiA9IDEuNSkKYGBgCgpJIHdvdWxkIGhhdmUgc3dvcm4gdGhhdCB0aGUgMi4wIHotc2NvcmUgc2V0IHdhcyBtdWNoIGxhcmdlciB0aGFuIHRoZQpwLXZhbHVlIHNldCBhbmQgaW5jbHVkZWQgYWxsIG9mIHRoZSAxMCBnZW5lcy4gIEFwcGFyZW50bHkgSSB3YXMgdmVyeQp3cm9uZy4KCiMjIyBOZXV0cm9waGlscwoKTm93IGV4YW1pbmUgdGhlIHZhcmlvdXMgbW9kZWxzIGZvciB0aGUgbmV1dHJvcGhpbCBzYW1wbGVzLgoKYGBge3J9Cm5ldXRyb3BoaWxfdmlzaXRfd2l0aF9kb25vciA8LSBtaXhlZF9uZXV0cm9waGlsX2RlJGFsbF90YWJsZXMkY29udHJhc3RzW1sxXV0KbmV1dHJvcGhpbF92aXNpdF93aXRob3V0X2Rvbm9yIDwtIG1peGVkX25ldXRyb3BoaWxfZnZfZGUkYWxsX3RhYmxlcyRjb250cmFzdHNbWzFdXQpkb25vcl9hdWNjIDwtIGNhbGN1bGF0ZV9hdWNjKG5ldXRyb3BoaWxfdmlzaXRfd2l0aF9kb25vciwgbmV1dHJvcGhpbF92aXNpdF93aXRob3V0X2Rvbm9yLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB4ID0gImFkai5QLlZhbCIsIHB5ID0gImFkai5QLlZhbCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbHggPSAibG9nRkMiLCBseSA9ICJsb2dGQyIpCmRvbm9yX2F1Y2MKd2l0aF9kb25vcl9nZW5lcyA8LSBhYnMobmV1dHJvcGhpbF92aXNpdF93aXRoX2Rvbm9yW1sibG9nRkMiXV0pID49IDEuMCAmCiAgbmV1dHJvcGhpbF92aXNpdF93aXRoX2Rvbm9yW1siUC5WYWx1ZSJdXSA8PSAwLjA1CndpdGhvdXRfZG9ub3JfZ2VuZXMgPC0gYWJzKG5ldXRyb3BoaWxfdmlzaXRfd2l0aG91dF9kb25vcltbImxvZ0ZDIl1dKSA+PSAxLjAgJgogIG5ldXRyb3BoaWxfdmlzaXRfd2l0aF9kb25vcltbIlAuVmFsdWUiXV0gPD0gMC4wNQpkb25vcl9nZW5lcyA8LSByb3duYW1lcyhuZXV0cm9waGlsX3Zpc2l0X3dpdGhfZG9ub3IpW3dpdGhfZG9ub3JfZ2VuZXNdCnZpc2l0X2dlbmVzIDwtIHJvd25hbWVzKG5ldXRyb3BoaWxfdmlzaXRfd2l0aF9kb25vcilbd2l0aG91dF9kb25vcl9nZW5lc10KdmVubl9sc3QgPC0gbGlzdCgKICAid2l0aF9kb25vciIgPSBkb25vcl9nZW5lcywKICAid2l0aF92aXNpdCIgPSB2aXNpdF9nZW5lcykKVmVubmVyYWJsZTo6VmVubih2ZW5uX2xzdCkKCm92ZXJsYXBfc2lnKG5ldXRyb3BoaWxfdmlzaXRfd2l0aF9kb25vcikKb3ZlcmxhcF9zaWcobmV1dHJvcGhpbF92aXNpdF93aXRoX2Rvbm9yLAogICAgICAgICAgICBtaXhlZF9wY29sID0gInouc3RkIiwgZGlyZWN0aW9uID0gImd0IiwgbWl4ZWRfY3V0b2ZmID0gMS41KQpgYGAKCiMjIyBFb3Npbm9waGlscwoKRmluYWxseSwgY29tcGFyZSBmb3IgdGhlIGVvc2lub3BoaWwgc2FtcGxlcy4KCmBgYHtyfQplb3Npbm9waGlsX3Zpc2l0X3dpdGhfZG9ub3IgPC0gbWl4ZWRfZW9zaW5vcGhpbF9kZSRhbGxfdGFibGVzJGNvbnRyYXN0c1tbMV1dCmVvc2lub3BoaWxfdmlzaXRfd2l0aG91dF9kb25vciA8LSBtaXhlZF9lb3Npbm9waGlsX2Z2X2RlJGFsbF90YWJsZXMkY29udHJhc3RzW1sxXV0KZG9ub3JfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyhlb3Npbm9waGlsX3Zpc2l0X3dpdGhfZG9ub3IsIGVvc2lub3BoaWxfdmlzaXRfd2l0aG91dF9kb25vciwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBweCA9ICJhZGouUC5WYWwiLCBweSA9ICJhZGouUC5WYWwiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIGx4ID0gImxvZ0ZDIiwgbHkgPSAibG9nRkMiKQpkb25vcl9hdWNjCndpdGhfZG9ub3JfZ2VuZXMgPC0gYWJzKGVvc2lub3BoaWxfdmlzaXRfd2l0aF9kb25vcltbImxvZ0ZDIl1dKSA+PSAxLjAgJgogIGVvc2lub3BoaWxfdmlzaXRfd2l0aF9kb25vcltbIlAuVmFsdWUiXV0gPD0gMC4wNQp3aXRob3V0X2Rvbm9yX2dlbmVzIDwtIGFicyhlb3Npbm9waGlsX3Zpc2l0X3dpdGhvdXRfZG9ub3JbWyJsb2dGQyJdXSkgPj0gMS4wICYKICBlb3Npbm9waGlsX3Zpc2l0X3dpdGhfZG9ub3JbWyJQLlZhbHVlIl1dIDw9IDAuMDUKZG9ub3JfZ2VuZXMgPC0gcm93bmFtZXMoZW9zaW5vcGhpbF92aXNpdF93aXRoX2Rvbm9yKVt3aXRoX2Rvbm9yX2dlbmVzXQp2aXNpdF9nZW5lcyA8LSByb3duYW1lcyhlb3Npbm9waGlsX3Zpc2l0X3dpdGhfZG9ub3IpW3dpdGhvdXRfZG9ub3JfZ2VuZXNdCnZlbm5fbHN0IDwtIGxpc3QoCiAgIndpdGhfZG9ub3IiID0gZG9ub3JfZ2VuZXMsCiAgIndpdGhfdmlzaXQiID0gdmlzaXRfZ2VuZXMpClZlbm5lcmFibGU6OlZlbm4odmVubl9sc3QpCgpvdmVybGFwX3NpZyhlb3Npbm9waGlsX3Zpc2l0X3dpdGhfZG9ub3IpCm92ZXJsYXBfc2lnKGVvc2lub3BoaWxfdmlzaXRfd2l0aF9kb25vciwKICAgICAgICAgICAgbWl4ZWRfcGNvbCA9ICJ6LnN0ZCIsIGRpcmVjdGlvbiA9ICJndCIsIG1peGVkX2N1dG9mZiA9IDEuNSkKYGBgCgpDb21wYXJlIGJhY2sgdG8gZGVzZXEgd2l0aCBTVkEgYW5kIHdpdGggU1ZBK3Zpc2l0IGFuZCBzZWUgaG93IHRoZXkKbG9vayB3aXRoIHJlc3BlY3QgdG8gdGhlIGRyZWFtIGludm9jYXRpb24gd2l0aG91dCB0aGUgcmFuZG9tIGRvbm9yCmVmZmVjdC4KCmBgYHtyfQpkZXNlcV9hdWNjIDwtIGNhbGN1bGF0ZV9hdWNjKG1lcmdlZCwgbW9ub2N5dGVfdmlzaXRfd2l0aG91dF9kb25vciwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBweCA9ICJkZXNlcV9hZGpwIiwgcHkgPSAiUC5WYWx1ZSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbHggPSAiZGVzZXFfbG9nZmMiLCBseSA9ICJsb2dGQyIpCmRlc2VxX2F1Y2MKCmRlc2VxX2dlbmVzX2lkeCA8LSBhYnMobWVyZ2VkW1siZGVzZXFfbG9nZmMiXV0pID49IDEuMCAmCiAgbWVyZ2VkW1siZGVzZXFfYWRqcCJdXSA8PSAwLjA1CndpdGhvdXRfZG9ub3JfZ2VuZXNfaWR4IDwtIGFicyhtb25vY3l0ZV92aXNpdF93aXRob3V0X2Rvbm9yW1sibG9nRkMiXV0pID49IDEuMCAmCiAgbW9ub2N5dGVfdmlzaXRfd2l0aF9kb25vcltbIlAuVmFsdWUiXV0gPD0gMC4wNQpkZXNlcV9nZW5lcyA8LSByb3duYW1lcyhtZXJnZWQpW2Rlc2VxX2dlbmVzX2lkeF0KdmlzaXRfZ2VuZXMgPC0gcm93bmFtZXMobW9ub2N5dGVfdmlzaXRfd2l0aF9kb25vcilbd2l0aG91dF9kb25vcl9nZW5lc19pZHhdCnZlbm5fbHN0IDwtIGxpc3QoCiAgIndpdGhfZG9ub3IiID0gZGVzZXFfZ2VuZXMsCiAgIndpdGhfdmlzaXQiID0gdmlzaXRfZ2VuZXMpClZlbm5lcmFibGU6OlZlbm4odmVubl9sc3QpCmBgYAoKVGhpcyB0aW1lIHdlIGFyZSBjb21wYXJpbmcgYmFjayB0byB0aGUgbW9ub2N5dGUgcmVzdWx0cyB3aGljaCBkaWQgbm90CmluY2x1ZGUgdGhlIHJhbmRvbSBkb25vciBlZmZlY3QuCgpgYGB7cn0KZGVzZXFfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyhtZXJnZWQsIG1vbm9jeXRlX3Zpc2l0X3dpdGhvdXRfZG9ub3IsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHggPSAibG9nMkZvbGRDaGFuZ2UiLCBweSA9ICJwYWRqIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBseCA9ICJhZGouUC5WYWwiLCBseSA9ICJsb2dGQyIpCmRlc2VxX2F1Y2MKCmRlc2VxX2dlbmVzX2lkeCA8LSBhYnMobWVyZ2VkW1sibG9nMkZvbGRDaGFuZ2UiXV0pID49IDEuMCAmCiAgbWVyZ2VkW1sicGFkaiJdXSA8PSAwLjA1CndpdGhvdXRfZG9ub3JfZ2VuZXNfaWR4IDwtIGFicyhtb25vY3l0ZV92aXNpdF93aXRob3V0X2Rvbm9yW1sibG9nRkMiXV0pID49IDEuMCAmCiAgbW9ub2N5dGVfdmlzaXRfd2l0aF9kb25vcltbIlAuVmFsdWUiXV0gPD0gMC4wNQpkZXNlcV9nZW5lcyA8LSByb3duYW1lcyhtZXJnZWQpW2Rlc2VxX2dlbmVzX2lkeF0KdmlzaXRfZ2VuZXMgPC0gcm93bmFtZXMobW9ub2N5dGVfdmlzaXRfd2l0aF9kb25vcilbd2l0aG91dF9kb25vcl9nZW5lc19pZHhdCnZlbm5fbHN0IDwtIGxpc3QoCiAgIndpdGhfZG9ub3IiID0gZGVzZXFfZ2VuZXMsCiAgIndpdGhfdmlzaXQiID0gdmlzaXRfZ2VuZXMpClZlbm5lcmFibGU6OlZlbm4odmVubl9sc3QpCmBgYAoKVGhpcyBpcyB0aGUgb3J0aG9sb2dvdXMgYXBwcm9hY2g6IGluY2x1ZGUgYSByYW5kb20gZWZmZWN0IGZvciBkb25vcgphbmQgaWdub3JlIHRoZSB2aXNpdCBlZmZlY3QuCgpgYGB7cn0KbWl4ZWRfZnN0cmluZ19mZCA8LSAifiAwICsgZmluYWxvdXRjb21lICsgKDF8ZG9ub3IpIgptaXhlZF9mb3JtX2ZkIDwtIGFzLmZvcm11bGEobWl4ZWRfZnN0cmluZ19mZCkKZ2V0X2Zvcm11bGFfZmFjdG9ycyhtaXhlZF9mb3JtX2ZkKQptaXhlZF9lb3Npbm9waGlsX2ZkX2RlIDwtIGRyZWFtX3BhaXJ3aXNlKHRfZW9zaW5vcGhpbHMsIGFsdF9tb2RlbCA9IG1peGVkX2Zvcm1fZmQpCm1peGVkX21vbm9jeXRlX2ZkX2RlIDwtIGRyZWFtX3BhaXJ3aXNlKHRfbW9ub2N5dGVzLCBhbHRfbW9kZWwgPSBtaXhlZF9mb3JtX2ZkKQptaXhlZF9uZXV0cm9waGlsX2ZkX2RlIDwtIGRyZWFtX3BhaXJ3aXNlKHRfbmV1dHJvcGhpbHMsIGFsdF9tb2RlbCA9IG1peGVkX2Zvcm1fZmQpCmBgYAoKIyMjIENvbXBhcmUgbW9ub2N5dGVzCgpOb3cgc2VlIGhvdyB0aGVzZSByZXN1bHRzIGNvbXBhcmUgYWdhaW5zdCBvdXIgcHJldmlvdXMgcmVzdWx0cy4uLgoKYGBge3J9Cm1vbm9jeXRlX2RyZWFtX3Jlc3VsdCA8LSBtaXhlZF9tb25vY3l0ZV9kZVtbImFsbF90YWJsZXMiXV1bWyJjb250cmFzdHMiXV1bWzFdXQoKYmlnX3RhYmxlIDwtIHRfY2ZfbW9ub2N5dGVfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0KbWVyZ2VkIDwtIG1lcmdlKGJpZ190YWJsZSwgbW9ub2N5dGVfZHJlYW1fcmVzdWx0LCBieSA9ICJyb3cubmFtZXMiKQpyb3duYW1lcyhtZXJnZWQpIDwtIG1lcmdlZFtbIlJvdy5uYW1lcyJdXQptZXJnZWRbWyJSb3cubmFtZXMiXV0gPC0gTlVMTApjb3JfdmFsdWUgPC0gY29yLnRlc3QobWVyZ2VkW1sibG9nRkMiXV0sIG1lcmdlZFtbImRlc2VxX2xvZ2ZjIl1dKQpjb3JfdmFsdWUKCnRfY2ZfbW9ub2N5dGVfZGVfc3ZhW1siZHJlYW0iXV0gPC0gbWl4ZWRfbW9ub2N5dGVfZGUKdGVzdCA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX21vbm9jeXRlX2RlX3N2YSwgc2NhbGVfcCA9IFRSVUUsCiAgZXhjZWwgPSAiZXhjZWwvdGVzdF9tb25vY3l0ZV9jb21iaW5lZC54bHN4IikKdGVzdF9hdWNjIDwtIGNhbGN1bGF0ZV9hdWNjKGJpZ190YWJsZSwgdGJsMiA9IG1vbm9jeXRlX2RyZWFtX3Jlc3VsdCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB4ID0gImRlc2VxX2FkanAiLCBweSA9ICJhZGouUC5WYWwiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbHggPSAiZGVzZXFfbG9nZmMiLCBseSA9ICJsb2dGQyIpCgpsb2dmY19wbG90dGVyIDwtIHBsb3RfbGluZWFyX3NjYXR0ZXIobWVyZ2VkWywgYygibG9nRkMiLCAiZGVzZXFfbG9nZmMiKV0pCmxvZ2ZjX3Bsb3QgPC0gbG9nZmNfcGxvdHRlcltbInNjYXR0ZXIiXV0gKwogIHhsYWIoIkRyZWFtIGxvZzJGQyB3aXRoICgxfGRvbm9yKSBhbmQgdmlzaXQgaW4gbW9kZWwiKSArCiAgeWxhYigiREVTZXEyIGxvZzJGQzogRGVmYXVsdCBwYWlyd2lzZSBjb21wYXJpc29uIikgKwogIGdndGl0bGUoZ2x1ZSgiQ29tcGFyaW5nIHJlc3VsdHMgZnJvbSBtb2RlbHM6IHtwcmV0dHlOdW0oY29yX3ZhbHVlW1snZXN0aW1hdGUnXV0pfSAocGVhcnNvbikKe3ByZXR0eU51bShsb2dmY19wbG90dGVyW1snbG1fcnNxJ11dKX0gKHItc3F1YXJlZCkiKSkKcHAoZmlsZSA9ICJmaWd1cmVzL2NvbXBhcmVfY2ZfYW5kX3Zpc2l0X2luX21vZGVsX21vbm9jeXRlX2xvZ2ZjLnN2ZyIpCmxvZ2ZjX3Bsb3QKZGV2Lm9mZigpCmxvZ2ZjX3Bsb3QKCnByZXZpb3VzX3NpZ19pZHggPC0gbWVyZ2VkW1siZGVzZXFfYWRqcCJdXSA8PSAwLjA1ICYgYWJzKG1lcmdlZFtbImRlc2VxX2xvZ2ZjIl1dID49IDEuMCkKc3VtbWFyeShwcmV2aW91c19zaWdfaWR4KQpwcmV2aW91c19nZW5lcyA8LSByb3duYW1lcyhtZXJnZWQpW3ByZXZpb3VzX3NpZ19pZHhdCgpuZXdfc2lnX2lkeCA8LSBhYnMobWVyZ2VkW1sibG9nRkMiXV0pID49IDEuMCAmIG1lcmdlZFtbIlAuVmFsdWUiXV0gPCAwLjA1CnN1bW1hcnkobmV3X3NpZ19pZHgpCm5ld19nZW5lcyA8LSByb3duYW1lcyhtZXJnZWQpW25ld19zaWdfaWR4XQpuYV9pZHggPC0gaXMubmEobmV3X2dlbmVzKQpuZXdfZ2VuZXMgPC0gbmV3X2dlbmVzWyFuYV9pZHhdCgphbm5vdCA8LSBmRGF0YSh0X21vbm9jeXRlcykKY29tcGFyZSA8LSBWZW5uZXJhYmxlOjpWZW5uKGxpc3QoInByZXZpb3VzIiA9IHByZXZpb3VzX2dlbmVzLCAibmV3IiA9IG5ld19nZW5lcykpCnNoYXJlZF9nZW5lcyA8LSBjb21wYXJlQEludGVyc2VjdGlvblNldHNbWyIxMSJdXQpuYW1lX2lkeCA8LSByb3duYW1lcyhhbm5vdCkgJWluJSBzaGFyZWRfZ2VuZXMKYW5ub3RbbmFtZV9pZHgsIF0KVmVubmVyYWJsZTo6cGxvdChjb21wYXJlKQpgYGAKCiMjIyBOZXV0cm9waGlscwoKYGBge3J9Cm5ldXRyb3BoaWxfZHJlYW1fcmVzdWx0IDwtIG1peGVkX25ldXRyb3BoaWxfZGVbWyJhbGxfdGFibGVzIl1dW1siY29udHJhc3RzIl1dW1sxXV0KCmJpZ190YWJsZSA8LSB0X2NmX25ldXRyb3BoaWxfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0KbWVyZ2VkIDwtIG1lcmdlKGJpZ190YWJsZSwgbmV1dHJvcGhpbF9kcmVhbV9yZXN1bHQsIGJ5ID0gInJvdy5uYW1lcyIpCnJvd25hbWVzKG1lcmdlZCkgPC0gbWVyZ2VkW1siUm93Lm5hbWVzIl1dCm1lcmdlZFtbIlJvdy5uYW1lcyJdXSA8LSBOVUxMCmNvcl92YWx1ZSA8LSBjb3IudGVzdChtZXJnZWRbWyJsb2dGQyJdXSwgbWVyZ2VkW1siZGVzZXFfbG9nZmMiXV0pCmNvcl92YWx1ZQoKdF9jZl9uZXV0cm9waGlsX2RlX3N2YVtbImRyZWFtIl1dIDwtIG1peGVkX25ldXRyb3BoaWxfZGUKdGVzdCA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX25ldXRyb3BoaWxfZGVfc3ZhLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9ICJleGNlbC90ZXN0X25ldXRyb3BoaWxfY29tYmluZWQueGxzeCIpCnRlc3RfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyhiaWdfdGFibGUsIHRibDIgPSBuZXV0cm9waGlsX2RyZWFtX3Jlc3VsdCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB4ID0gImRlc2VxX2FkanAiLCBweSA9ICJhZGouUC5WYWwiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbHggPSAiZGVzZXFfbG9nZmMiLCBseSA9ICJsb2dGQyIpCgpsb2dmY19wbG90dGVyIDwtIHBsb3RfbGluZWFyX3NjYXR0ZXIobWVyZ2VkWywgYygibG9nRkMiLCAiZGVzZXFfbG9nZmMiKV0pCmxvZ2ZjX3Bsb3QgPC0gbG9nZmNfcGxvdHRlcltbInNjYXR0ZXIiXV0gKwogIHhsYWIoIkRyZWFtIGxvZzJGQyB3aXRoICgxfGRvbm9yKSBhbmQgdmlzaXQgaW4gbW9kZWwiKSArCiAgeWxhYigiREVTZXEyIGxvZzJGQzogRGVmYXVsdCBwYWlyd2lzZSBjb21wYXJpc29uIikgKwogIGdndGl0bGUoZ2x1ZSgiQ29tcGFyaW5nIHJlc3VsdHMgZnJvbSBtb2RlbHM6IHtwcmV0dHlOdW0oY29yX3ZhbHVlW1snZXN0aW1hdGUnXV0pfSAocGVhcnNvbikKe3ByZXR0eU51bShsb2dmY19wbG90dGVyW1snbG1fcnNxJ11dKX0gKHItc3F1YXJlZCkiKSkKcHAoZmlsZSA9ICJmaWd1cmVzL2NvbXBhcmVfY2ZfYW5kX3Zpc2l0X2luX21vZGVsX25ldXRyb3BoaWxfbG9nZmMuc3ZnIikKbG9nZmNfcGxvdApkZXYub2ZmKCkKbG9nZmNfcGxvdAoKcHJldmlvdXNfc2lnX2lkeCA8LSBtZXJnZWRbWyJkZXNlcV9hZGpwIl1dIDw9IDAuMDUgJiBhYnMobWVyZ2VkW1siZGVzZXFfbG9nZmMiXV0gPj0gMS4wKQpzdW1tYXJ5KHByZXZpb3VzX3NpZ19pZHgpCnByZXZpb3VzX2dlbmVzIDwtIHJvd25hbWVzKG1lcmdlZClbcHJldmlvdXNfc2lnX2lkeF0KCm5ld19zaWdfaWR4IDwtIGFicyhtZXJnZWRbWyJsb2dGQyJdXSkgPj0gMS4wICYgbWVyZ2VkW1siUC5WYWx1ZSJdXSA8IDAuMDUKc3VtbWFyeShuZXdfc2lnX2lkeCkKbmV3X2dlbmVzIDwtIHJvd25hbWVzKG1lcmdlZClbbmV3X3NpZ19pZHhdCm5hX2lkeCA8LSBpcy5uYShuZXdfZ2VuZXMpCm5ld19nZW5lcyA8LSBuZXdfZ2VuZXNbIW5hX2lkeF0KCmFubm90IDwtIGZEYXRhKHRfbmV1dHJvcGhpbHMpCmNvbXBhcmUgPC0gVmVubmVyYWJsZTo6VmVubihsaXN0KCJwcmV2aW91cyIgPSBwcmV2aW91c19nZW5lcywgIm5ldyIgPSBuZXdfZ2VuZXMpKQpzaGFyZWRfZ2VuZXMgPC0gY29tcGFyZUBJbnRlcnNlY3Rpb25TZXRzW1siMTEiXV0KbmFtZV9pZHggPC0gcm93bmFtZXMoYW5ub3QpICVpbiUgc2hhcmVkX2dlbmVzCmFubm90W25hbWVfaWR4LCBdClZlbm5lcmFibGU6OnBsb3QoY29tcGFyZSkKYGBgCgojIyMgRW9zaW5vcGhpbHMKCmBgYHtyfQplb3Npbm9waGlsX2RyZWFtX3Jlc3VsdCA8LSBtaXhlZF9lb3Npbm9waGlsX2RlW1siYWxsX3RhYmxlcyJdXVtbImNvbnRyYXN0cyJdXVtbMV1dCgpiaWdfdGFibGUgPC0gdF9jZl9lb3Npbm9waGlsX3RhYmxlX3N2YVtbImRhdGEiXV1bWyJvdXRjb21lIl1dCm1lcmdlZCA8LSBtZXJnZShiaWdfdGFibGUsIGVvc2lub3BoaWxfZHJlYW1fcmVzdWx0LCBieSA9ICJyb3cubmFtZXMiKQpyb3duYW1lcyhtZXJnZWQpIDwtIG1lcmdlZFtbIlJvdy5uYW1lcyJdXQptZXJnZWRbWyJSb3cubmFtZXMiXV0gPC0gTlVMTApjb3JfdmFsdWUgPC0gY29yLnRlc3QobWVyZ2VkW1sibG9nRkMiXV0sIG1lcmdlZFtbImRlc2VxX2xvZ2ZjIl1dKQpjb3JfdmFsdWUKCnRfY2ZfZW9zaW5vcGhpbF9kZV9zdmFbWyJkcmVhbSJdXSA8LSBtaXhlZF9lb3Npbm9waGlsX2RlCnRlc3QgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9lb3Npbm9waGlsX2RlX3N2YSwgc2NhbGVfcCA9IFRSVUUsCiAgZXhjZWwgPSAiZXhjZWwvdGVzdF9lb3Npbm9waGlsX2NvbWJpbmVkLnhsc3giKQp0ZXN0X2F1Y2MgPC0gY2FsY3VsYXRlX2F1Y2MoYmlnX3RhYmxlLCB0YmwyID0gZW9zaW5vcGhpbF9kcmVhbV9yZXN1bHQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBweCA9ICJkZXNlcV9hZGpwIiwgcHkgPSAiYWRqLlAuVmFsIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIGx4ID0gImRlc2VxX2xvZ2ZjIiwgbHkgPSAibG9nRkMiKQoKbG9nZmNfcGxvdHRlciA8LSBwbG90X2xpbmVhcl9zY2F0dGVyKG1lcmdlZFssIGMoImxvZ0ZDIiwgImRlc2VxX2xvZ2ZjIildKQpsb2dmY19wbG90IDwtIGxvZ2ZjX3Bsb3R0ZXJbWyJzY2F0dGVyIl1dICsKICB4bGFiKCJEcmVhbSBsb2cyRkMgd2l0aCAoMXxkb25vcikgYW5kIHZpc2l0IGluIG1vZGVsIikgKwogIHlsYWIoIkRFU2VxMiBsb2cyRkM6IERlZmF1bHQgcGFpcndpc2UgY29tcGFyaXNvbiIpICsKICBnZ3RpdGxlKGdsdWUoIkNvbXBhcmluZyByZXN1bHRzIGZyb20gbW9kZWxzOiB7cHJldHR5TnVtKGNvcl92YWx1ZVtbJ2VzdGltYXRlJ11dKX0gKHBlYXJzb24pCntwcmV0dHlOdW0obG9nZmNfcGxvdHRlcltbJ2xtX3JzcSddXSl9IChyLXNxdWFyZWQpIikpCnBwKGZpbGUgPSAiZmlndXJlcy9jb21wYXJlX2NmX2FuZF92aXNpdF9pbl9tb2RlbF9lb3Npbm9waGlsX2xvZ2ZjLnN2ZyIpCmxvZ2ZjX3Bsb3QKZGV2Lm9mZigpCmxvZ2ZjX3Bsb3QKCnByZXZpb3VzX3NpZ19pZHggPC0gbWVyZ2VkW1siZGVzZXFfYWRqcCJdXSA8PSAwLjA1ICYgYWJzKG1lcmdlZFtbImRlc2VxX2xvZ2ZjIl1dID49IDEuMCkKc3VtbWFyeShwcmV2aW91c19zaWdfaWR4KQpwcmV2aW91c19nZW5lcyA8LSByb3duYW1lcyhtZXJnZWQpW3ByZXZpb3VzX3NpZ19pZHhdCgpuZXdfc2lnX2lkeCA8LSBhYnMobWVyZ2VkW1sibG9nRkMiXV0pID49IDEuMCAmIG1lcmdlZFtbIlAuVmFsdWUiXV0gPCAwLjA1CnN1bW1hcnkobmV3X3NpZ19pZHgpCm5ld19nZW5lcyA8LSByb3duYW1lcyhtZXJnZWQpW25ld19zaWdfaWR4XQpuYV9pZHggPC0gaXMubmEobmV3X2dlbmVzKQpuZXdfZ2VuZXMgPC0gbmV3X2dlbmVzWyFuYV9pZHhdCgphbm5vdCA8LSBmRGF0YSh0X2Vvc2lub3BoaWxzKQpjb21wYXJlIDwtIFZlbm5lcmFibGU6OlZlbm4obGlzdCgicHJldmlvdXMiID0gcHJldmlvdXNfZ2VuZXMsICJuZXciID0gbmV3X2dlbmVzKSkKc2hhcmVkX2dlbmVzIDwtIGNvbXBhcmVASW50ZXJzZWN0aW9uU2V0c1tbIjExIl1dCm5hbWVfaWR4IDwtIHJvd25hbWVzKGFubm90KSAlaW4lIHNoYXJlZF9nZW5lcwphbm5vdFtuYW1lX2lkeCwgXQpWZW5uZXJhYmxlOjpwbG90KGNvbXBhcmUpCmBgYAoKIyBQZXJmb3JtIGRyZWFtIHdpdGggYWxsIHNhbXBsZXMgdG9nZXRoZXIgYW5kIGEgbW9kZWwgd2l0aCBhbGwgZmFjdG9ycwoKTm93IHRoYXQgSSBoYXZlIHBlcmZvcm1lZCBhbGwgb2YgdGhlIGFib3ZlLCBJIHRoaW5rIGl0IHNob3VsZCBiZQpwb3NzaWJsZSB0byBoYXZlIGEgd29ya2luZyBhbmFseXNpcyB1c2luZyBkcmVhbSB0aGF0IGluY2x1ZGVzCmNlbGx0eXBlLCB2aXNpdG51bWJlciwgZmluYWxvdXRjb21lLCBkb25vciwgYW5kIHBlcmhhcHMgU1ZzLgoKYGBge3IsIGV2YWw9RkFMU0V9Cm1peGVkX2ZzdHJpbmcgPC0gIn4gMCArIGZpbmFsb3V0Y29tZSArIHR5cGVvZmNlbGxzICsgdmlzaXRudW1iZXIgKyAoMXxkb25vcikiCm1peGVkX2Zvcm11bGEgPC0gYXMuZm9ybXVsYShtaXhlZF9mc3RyaW5nKQptaXhlZF9mc3RyaW5nX3N2cyA8LSAifiAwICsgZmluYWxvdXRjb21lICsgdHlwZW9mY2VsbHMgKyB2aXNpdG51bWJlciArICgxfGRvbm9yKSArIHN2YXNlcV9TVjEgKyBzdmFzZXFfU1YyICsgc3Zhc2VxX1NWMyArIHN2YXNlcV9TVjQiCm1peGVkX2Zvcm11bGFfc3ZzIDwtIGFzLmZvcm11bGEobWl4ZWRfZnN0cmluZ19zdnMpCmFsbF9kcmVhbV9kZSA8LSBkcmVhbV9wYWlyd2lzZSh0X2NsaW5pY2FsX25vYmlvcCwgYWx0X21vZGVsID0gbWl4ZWRfZm9ybXVsYSkKbWl4ZWRfYWxsX2NlbGx0eXBlc19kZV94bHN4IDwtIHdyaXRlX2RlX3RhYmxlKGFsbF9kcmVhbV9kZSwgdHlwZSA9ICJsaW1tYSIsIGV4Y2VsID0gZ2x1ZSgiZXhjZWwvbWl4ZWRfYWxsX2NlbGx0eXBlc19ub2Jpb3BfdGFibGUtdnt2ZXJ9Lnhsc3giKSkKYWxsX2RyZWFtX3Jlc3VsdCA8LSBhbGxfZHJlYW1fZGVbWyJhbGxfdGFibGVzIl1dW1siY29udHJhc3RzIl1dW1siZmFpbHVyZV92c19jdXJlIl1dICU+JQogIGFycmFuZ2UoZGVzYyhsb2dGQykpCmZjX3NpZ19pZHggPC0gYWxsX2RyZWFtX3Jlc3VsdFtbImxvZ0ZDIl1dID49IDEuMCAmIGFsbF9kcmVhbV9yZXN1bHRbWyJ6LnN0ZCJdXSA+PSAyLjAKZHJlYW1fc2lnIDwtIHJvd25hbWVzKGFsbF9kcmVhbV9yZXN1bHRbZmNfc2lnX2lkeCwgXSkKCnN2c19hbGxfZHJlYW1fZGUgPC0gZHJlYW1fcGFpcndpc2UodF9jbGluaWNhbF9ub2Jpb3AsIGFsdF9tb2RlbCA9IG1peGVkX2Zvcm11bGFfc3ZzKQp0ZXN0IDwtIGhwZ2xfcGFkanVzdChzdnNfYWxsX2RyZWFtX2RlW1siYWxsX3RhYmxlcyJdXVtbImNvbnRyYXN0cyJdXVtbMV1dLCBwdmFsdWVfY29sdW1uID0gIlAuVmFsdWUiLAogICAgICAgICAgICAgICAgICAgICBtZWFuX2NvbHVtbiA9ICJBdmVFeHByIiwgbWV0aG9kID0gImlodyIsIHR5cGUgPSAibGltbWEiKQpgYGAKCmBgYHtyfQp0X2NsaW5pY2FsX291dGNvbWVjZWxsX2ZhY3QgPC0gcGFzdGUwKHBEYXRhKHRfY2xpbmljYWxfbm9iaW9wKVtbImZpbmFsb3V0Y29tZSJdXSwgIl8iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBEYXRhKHRfY2xpbmljYWxfbm9iaW9wKVtbInR5cGVvZmNlbGxzIl1dKQp0X2NsaW5pY2FsX291dGNvbWVjZWxsIDwtIHRfY2xpbmljYWxfbm9iaW9wCnBEYXRhKHRfY2xpbmljYWxfb3V0Y29tZWNlbGwpW1sib3V0Y29tZWNlbGwiXV0gPC0gdF9jbGluaWNhbF9vdXRjb21lY2VsbF9mYWN0CnRfY2xpbmljYWxfb3V0Y29tZWNlbGwgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0X2NsaW5pY2FsX291dGNvbWVjZWxsLCBmYWN0ID0gIm91dGNvbWVjZWxsIikKCnRfY2xpbmljYWxfb3V0Y29tZWNlbGxfZGUgPC0gYWxsX3BhaXJ3aXNlKHRfY2xpbmljYWxfb3V0Y29tZWNlbGwsIGtlZXBlcnMgPSBvdXRjb21ldHlwZV9jb250cmFzdHMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsX2JhdGNoID0gInN2YXNlcSIpCm1peGVkX2ZzdHJpbmcgPC0gIn4gMCArIGNvbmRpdGlvbiArIHZpc2l0bnVtYmVyICsgKDF8ZG9ub3IpIgp0X2NsaW5pY2FsX291dGNvbWVjZWxsX2RyZWFtIDwtIGRyZWFtX3BhaXJ3aXNlKHRfY2xpbmljYWxfb3V0Y29tZWNlbGwsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYWx0X21vZGVsID0gYXMuZm9ybXVsYShtaXhlZF9mc3RyaW5nKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBrZWVwZXJzID0gb3V0Y29tZXR5cGVfY29udHJhc3RzKQp0X2NsaW5pY2FsX291dGNvbWVjZWxsX3RhYmxlIDwtIHdyaXRlX2RlX3RhYmxlKHRfY2xpbmljYWxfb3V0Y29tZWNlbGxfZHJlYW0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHlwZSA9ICJsaW1tYSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlKCJleGNlbC9taXhlZF9jbGluaWNhbF9vdXRjb21lY2VsbC12e3Zlcn0ueGxzeCIpKQpgYGAKCmBgYHtyfQpiaWdfdGFibGUgPC0gdF9jZl9jbGluaWNhbG5iX3RhYmxlX3N2YVtbImRhdGEiXV1bWyJvdXRjb21lIl1dCm1lcmdlZCA8LSBtZXJnZShiaWdfdGFibGUsIGFsbF9kcmVhbV9yZXN1bHQsIGJ5ID0gInJvdy5uYW1lcyIpCnJvd25hbWVzKG1lcmdlZCkgPC0gbWVyZ2VkW1siUm93Lm5hbWVzIl1dCm1lcmdlZFtbIlJvdy5uYW1lcyJdXSA8LSBOVUxMCmNvcl92YWx1ZSA8LSBjb3IudGVzdChtZXJnZWRbWyJsb2dGQyJdXSwgbWVyZ2VkW1siZGVzZXFfbG9nZmMiXV0pCmNvcl92YWx1ZQoKdGVzdF9hdWNjIDwtIGNhbGN1bGF0ZV9hdWNjKGJpZ190YWJsZSwgdGJsMiA9IG1vbm9jeXRlX2RyZWFtX3Jlc3VsdCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB4ID0gImRlc2VxX2FkanAiLCBweSA9ICJhZGouUC5WYWwiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbHggPSAiZGVzZXFfbG9nZmMiLCBseSA9ICJsb2dGQyIpCnRlc3RfYXVjYwoKbG9nZmNfcGxvdHRlciA8LSBwbG90X2xpbmVhcl9zY2F0dGVyKG1lcmdlZFssIGMoImxvZ0ZDIiwgImRlc2VxX2xvZ2ZjIildKQpsb2dmY19wbG90IDwtIGxvZ2ZjX3Bsb3R0ZXJbWyJzY2F0dGVyIl1dICsKICB4bGFiKCJEcmVhbSBsb2cyRkMgd2l0aCAoMXxkb25vcikgYW5kIHZpc2l0IGluIG1vZGVsIikgKwogIHlsYWIoIkRFU2VxMiBsb2cyRkM6IERlZmF1bHQgcGFpcndpc2UgY29tcGFyaXNvbiIpICsKICBnZ3RpdGxlKGdsdWUoIkNvbXBhcmluZyByZXN1bHRzIGZyb20gbW9kZWxzOiB7cHJldHR5TnVtKGNvcl92YWx1ZVtbJ2VzdGltYXRlJ11dKX0gKHBlYXJzb24pIikpCnBwKGZpbGUgPSAiaW1hZ2VzL2NvbXBhcmVfY2ZfYW5kX2RyZWFtX2NsaW5pY2FsX3NhbXBsZXMucG5nIikKbG9nZmNfcGxvdApkZXYub2ZmKCkKbG9nZmNfcGxvdAoKY29yX3ZhbHVlIDwtIGNvci50ZXN0KG1lcmdlZFtbIlAuVmFsdWUiXV0sIG1lcmdlZFtbImRlc2VxX2FkanAiXV0sIG1ldGhvZCA9ICJzcGVhcm1hbiIpCmNvcl92YWx1ZQphZGpwX3Bsb3R0ZXIgPC0gcGxvdF9saW5lYXJfc2NhdHRlcihtZXJnZWRbLCBjKCJQLlZhbHVlIiwgImRlc2VxX2FkanAiKV0pCmFkanBfcGxvdCA8LSBhZGpwX3Bsb3R0ZXJbWyJzY2F0dGVyIl1dICsKICB4bGFiKCJERVNlcTIgYWRqcDogRHJlYW0gbm90LWFkanVzdGVkIHAtdmFsdWUiKSArCiAgeWxhYigiREVTZXEyIGFkanA6IERlZmF1bHQgcGFpcndpc2UgY29tcGFyaXNvbiIpICsKICBnZ3RpdGxlKGdsdWUoIkNvbXBhcmluZyByZXN1bHRzIGZyb20gbW9kZWxzOiB7cHJldHR5TnVtKGNvcl92YWx1ZVtbJ2VzdGltYXRlJ11dKX0gKHNwZWFybWFuKSIpKQpwcChmaWxlID0gImltYWdlcy9jb21wYXJlX2NmX2FuZF92aXNpdF9pbl9tb2RlbF9tb25vY3l0ZV9hZGpwLnN2ZyIpCmFkanBfcGxvdApkZXYub2ZmKCkKYWRqcF9wbG90CgpwcmV2aW91c19zaWdfaWR4IDwtIG1lcmdlZFtbImRlc2VxX2FkanAiXV0gPD0gMC4wNSAmIGFicyhtZXJnZWRbWyJkZXNlcV9sb2dmYyJdXSA+PSAxLjApCnN1bW1hcnkocHJldmlvdXNfc2lnX2lkeCkKcHJldmlvdXNfZ2VuZXMgPC0gcm93bmFtZXMobWVyZ2VkKVtwcmV2aW91c19zaWdfaWR4XQoKbmV3X3NpZ19pZHggPC0gYWJzKG1lcmdlZFtbImxvZ0ZDIl1dKSA+PSAxLjAgJiBtZXJnZWRbWyJQLlZhbHVlIl1dIDwgMC4wNQpzdW1tYXJ5KG5ld19zaWdfaWR4KQpuZXdfZ2VuZXMgPC0gcm93bmFtZXMobWVyZ2VkKVtuZXdfc2lnX2lkeF0KbmFfaWR4IDwtIGlzLm5hKG5ld19nZW5lcykKbmV3X2dlbmVzIDwtIG5ld19nZW5lc1shbmFfaWR4XQoKYW5ub3QgPC0gZkRhdGEodF9tb25vY3l0ZXMpCmNvbXBhcmUgPC0gVmVubmVyYWJsZTo6VmVubihsaXN0KCJwcmV2aW91cyIgPSBwcmV2aW91c19nZW5lcywgIm5ldyIgPSBuZXdfZ2VuZXMpKQpzaGFyZWRfZ2VuZXMgPC0gY29tcGFyZUBJbnRlcnNlY3Rpb25TZXRzW1siMTEiXV0KbmFtZV9pZHggPC0gcm93bmFtZXMoYW5ub3QpICVpbiUgc2hhcmVkX2dlbmVzCmFubm90W25hbWVfaWR4LCBdCmBgYAoKTGV0IHVzIHVzZSB0aGUgb3ZlcmxhcF9zaWcoKSBmcm9tIGFib3ZlIHRvIHNlZSBob3cgc2ltaWxhciB0aGlzIHJlc3VsdAppcyB0byBvdXIgREVTZXEyK1NWQS4KCmBgYHtyfQphbGxfZHJlYW1fdGFibGUgPC0gYWxsX2RyZWFtX2RlW1siYWxsX3RhYmxlcyJdXVtbImNvbnRyYXN0cyJdXVtbImZhaWx1cmVfdnNfY3VyZSJdXQpvdmVybGFwX3NpZyhhbGxfZHJlYW1fdGFibGUpCm92ZXJsYXBfc2lnKGFsbF9kcmVhbV90YWJsZSwgZGlyZWN0aW9uID0gImd0IiwgbWl4ZWRfcGNvbCA9ICJ6LnN0ZCIsIG1peGVkX2N1dG9mZiA9IDEuNSkKCmFsbF9kcmVhbV90YWJsZV9zdnMgPC0gc3ZzX2FsbF9kcmVhbV9kZVtbImFsbF90YWJsZXMiXV1bWyJjb250cmFzdHMiXV1bWyJmYWlsdXJlX3ZzX2N1cmUiXV0Kb3ZlcmxhcF9zaWcoYWxsX2RyZWFtX3RhYmxlX3N2cykKb3ZlcmxhcF9zaWcoYWxsX2RyZWFtX3RhYmxlX3N2cywgZGlyZWN0aW9uID0gImd0IiwgbWl4ZWRfcGNvbCA9ICJ6LnN0ZCIsIG1peGVkX2N1dG9mZiA9IDEuNSkKYGBgCgojIyBSZWNhcGl0dWxhdGluZyB0aGUgMTAgZ2VuZXMgb2YgaW50ZXJlc3QKCk9uZSBmaWd1cmUgSSBkaWQgbm90IGNyZWF0ZSBpcyBhIHZlbm4gZGlhZ3JhbSBzaG93aW5nIHRoZSBvdmVybGFwIG9mCnRoZSBlb3Npb25waGlsLCBuZXV0cm9waGlsLCBhbmQgbW9ub2N5dGUgcmVzdWx0cyBhbmQgdGhlIDEwIGdlbmVzCnNoYXJlZCBhbW9uZyB0aGVtIGFsbC4gIEF0IGxlYXN0IGluIHRoZW9yeSBJIHNob3VsZCBiZSBlYXNpbHkgYWJsZSB0bwpjcmVhdGUgYSBzaW1pbGFyL2lkZW50aWNhbCBwbG90LgoKYGBge3J9Cm9ic2VydmVkX2Vvc2lub3BoaWxzIDwtIGMoCiAgcm93bmFtZXModF9jZl9lb3Npbm9waGlsX3NpZ19zdmFbWyJkZXNlcSJdXVtbInVwcyJdXVtbIm91dGNvbWUiXV0pLAogIHJvd25hbWVzKHRfY2ZfZW9zaW5vcGhpbF9zaWdfc3ZhW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbIm91dGNvbWUiXV0pKQpvYnNlcnZlZF9tb25vY3l0ZXMgPC0gYygKICByb3duYW1lcyh0X2NmX21vbm9jeXRlX3NpZ19zdmFbWyJkZXNlcSJdXVtbInVwcyJdXVtbIm91dGNvbWUiXV0pLAogIHJvd25hbWVzKHRfY2ZfbW9ub2N5dGVfc2lnX3N2YVtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJvdXRjb21lIl1dKSkKb2JzZXJ2ZWRfbmV1dHJvcGhpbHMgPC0gYygKICByb3duYW1lcyh0X2NmX25ldXRyb3BoaWxfc2lnX3N2YVtbImRlc2VxIl1dW1sidXBzIl1dW1sib3V0Y29tZSJdXSksCiAgcm93bmFtZXModF9jZl9uZXV0cm9waGlsX3NpZ19zdmFbWyJkZXNlcSJdXVtbImRvd25zIl1dW1sib3V0Y29tZSJdXSkpCnZlbm5faW5wdXQgPC0gbGlzdCgKICAiZW9zaW5vcGhpbCIgPSBvYnNlcnZlZF9lb3Npbm9waGlscywKICAibW9ub2N5dGUiID0gb2JzZXJ2ZWRfbW9ub2N5dGVzLAogICJuZXV0cm9waGlscyIgPSBvYnNlcnZlZF9uZXV0cm9waGlscykKc2hhcmVkIDwtIFZlbm5lcmFibGU6OlZlbm4odmVubl9pbnB1dCkKc2hhcmVkClZlbm5lcmFibGU6OnBsb3Qoc2hhcmVkKQoKaW50ZXJzZWN0IDwtICJlb3Npbm9waGlsOm1vbm9jeXRlOm5ldXRyb3BoaWxzIgpjZWxsdHlwZV91cHNldCA8LSBVcFNldFI6OnVwc2V0KFVwU2V0Ujo6ZnJvbUxpc3QodmVubl9pbnB1dCksIHRleHQuc2NhbGUgPSAyKQpjZWxsdHlwZV91cHNldApjZWxsdHlwZV9zaGFyZWRfZ2VuZXMgPC0gb3ZlcmxhcF9ncm91cHModmVubl9pbnB1dCkKY2VsbHR5cGVfZ2VuZWlkcyA8LSBvdmVybGFwX2dlbmVpZHMoY2VsbHR5cGVfc2hhcmVkX2dlbmVzLCBpbnRlcnNlY3QpCmlkcyA8LSBhdHRyKGNlbGx0eXBlX3NoYXJlZF9nZW5lcywgImVsZW1lbnRzIilbY2VsbHR5cGVfc2hhcmVkX2dlbmVzW1tpbnRlcnNlY3RdXV0KaWRzCnJvd3MgPC0gZkRhdGEodF9tb25vY3l0ZXMpW2lkcywgXQpyb3dzW1siaGduY19zeW1ib2wiXV0KYGBgCgpOb3RlIHRvIHNlbGYsIHdoZW4gSSByZW5kZXJlZCB0aGUgaHRtbCwgc3R1cGlkIFIgcmFuIG91dCBvZiB0ZW1wIGZpbGVzCmFuZCBzbyBkaWQgbm90IGFjdHVhbGx5IHByaW50IHRoZSBkYXJuIGh0bWwgZG9jdW1lbnQsIGFzIGEgcmVzdWx0IEkKbW9kaWZpZWQgdGhlIHJlbmRlciBmdW5jdGlvbiB0byB0cnkgdG8gbWFrZSBzdXJlIHRoZXJlIGlzIGEgY2xlYW4KZGlyZWN0b3J5IGluIHdoaWNoIHRvIHdvcms7IHRlc3Rpbmcgbm93LiAgSWYgaXQgY29udGludWVzIHRvIG5vdCB3b3JrLApJIHdpbGwgbmVlZCB0byByZW1vdmUgc29tZSBvZiB0aGUgaW1hZ2VzIGNyZWF0ZWQgaW4gdGhpcyBkb2N1bWVudC4KCiMgQSBxdWVzdGlvbiBvZiBwLXZhbHVlcwoKTWFyaWEgQWRlbGFpZGEgaGFzIGFza2VkIGFib3V0IHRoZSBkaXN0cmlidXRpb24gb2YgKG5vbilhZGp1c3RlZApwLXZhbHVlcyBwcm9kdWNlZCBieSB0aGUgdmFyaW91cyBtZXRob2RzIHdlIGVtcGxveWVkLiAgSSB1c2UgQkggYnkKZGVmYXVsdDsgc28gbGV0cyB0YWtlIGEgbW9tZW50IHRvIGV4YW1pbmUgdGhlIGRpc3RyaWJ1dGlvbiBvZiBwLXZhbHVlcwphbmQgaG93IHRoZXkgZ2V0IGFkanVzdGVkIGJ5IEJIIGFuZCBhIGZldyBvZiB0aGUgb3RoZXIgbWV0aG9kcy4KCmBgYHtyfQpkcmVhbV9wdmFsdWVzIDwtIGFsbF9kcmVhbV90YWJsZVtbIlAuVmFsdWUiXV0KbmFtZXMoZHJlYW1fcHZhbHVlcykgPC0gcm93bmFtZXMoYWxsX2RyZWFtX3RhYmxlKQoKZGVzZXFfcHZhbHVlcyA8LSB0X2NmX2NsaW5pY2FsbmJfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV1bWyJkZXNlcV9wIl1dCm5hbWVzKGRlc2VxX3B2YWx1ZXMpIDwtIHJvd25hbWVzKHRfY2ZfY2xpbmljYWxuYl90YWJsZV9zdmFbWyJkYXRhIl1dW1sib3V0Y29tZSJdXSkKCiMjIE5vdGUsIG15IHhsc3ggZmlsZXMgcHJvdmlkZSB0aGVzZSBpbWFnZXMuCnBsb3RfaGlzdG9ncmFtKGRyZWFtX3B2YWx1ZXMpCnBsb3RfaGlzdG9ncmFtKGRlc2VxX3B2YWx1ZXMpCmBgYAoKSW1tZWRpYXRlbHkgd2Ugc2VlIHRoYXQgdGhlIHZhbHVlcyBwcm9kdWNlZCBoYXZlIHZlcnkgZGlmZmVyZW50CmRpc3RyaWJ1dGlvbnMgYW5kIHRoYXQsIHRob3VnaCB0aGVyZSBhcmUgbWFueSBsb3cgcC12YWx1ZXMgcHJvZHVjZWQgYnkKZHJlYW0sIHRoZXkgYXJlIGZhciBmZXdlciB0aGFuIG9ic2VydmVkIGJ5IGRlc2VxLgoKTm93IGNvbnNpZGVyIHRoZSBCSCBjb3JyZWN0aW9uOyB1c2luZyBpdCwgd2UgcmFuayBvcmRlciB0aGUgcC12YWx1ZXMKZnJvbSBsb3dlc3QgdG8gaGlnaGVzdC4gIFRoZW4gd2UgY2hvb3NlIGEgZGVub21pbmF0b3IgZm9yIGV2ZXJ5CnAtdmFsdWUgd2hpY2ggcmFuZ2VzIGZyb20gMSB0byB0aGUgbnVtYmVyIG9mIGVsZW1lbnRzIGluIHRoZSBzZXQgb2YKcC12YWx1ZXMuICBGaW5hbGx5IHdlIHRha2UgdGhlIG1pbmltdW0gYmV0d2VlbiAxIGFuZCB0aGUgY3VtdWxhdGl2ZQptaW5pbXVtIG9mICgjcHZhbHVlcy9kZW5vbWluYXRvcikgKiB0aGF0LXB2YWx1ZS4gIFdyaXR0ZW4gb3V0IHRoZQpwcm9jZXNzIGxvb2tzIGxpa2UgdGhpczoKCmBgYHtyfQp0ZXN0X3B2YWx1ZXMgPC0gZGVzZXFfcHZhbHVlcwppZHggPC0gb3JkZXIodGVzdF9wdmFsdWVzKQp0ZXN0X3B2YWx1ZXMgPC0gdGVzdF9wdmFsdWVzW2lkeF0KbnVtX3B2YWx1ZXMgPC0gbGVuZ3RoKHRlc3RfcHZhbHVlcykKbmV3X3B2YWx1ZXMgPC0gdGVzdF9wdmFsdWVzCmZvciAoaSBpbiBzZXFfYWxvbmcodGVzdF9wdmFsdWVzKSkgewogIGVsZW1lbnQgPC0gdGVzdF9wdmFsdWVzW2ldCiAgbmV3X3B2YWx1ZXNbaV0gPC0gbWluKDEsIGN1bW1pbigobnVtX3B2YWx1ZXMgLyBpKSAqIGVsZW1lbnQpKQp9CnRlc3RfYWdhaW5zdCA8LSBwLmFkanVzdCh0ZXN0X3B2YWx1ZXMsIG1ldGhvZCA9ICJCSCIpCmBgYAoKU28sIGNvbnNpZGVyIGZvciBhIG1vbWVudCB0aGUgZmlyc3QgcC12YWx1ZXMgcHJvZHVjZWQgYnkgZGVzZXE6CjEuMTk1ZS0yNCwgMy40ODllLTIyLCA5LjYxMmUtMjIsIDQuODUzZS0xOCwgOS44NjRlLTE1LCAzLjI3NWUtMTQKClRoZSBuZXcgcC12YWx1ZXMgd2lsbCBiZSB0aGUgKG51bWJlciBvZiBnZW5lcyAvIHRoZSBjdXJyZW50CnBvc2l0aW9uKSAqIHRoZSBjdXJyZW50IGVsZW1lbnQKCiogKDExOTEwIC8gMSkgKiAxLjE5NWUtMjQgd2hpY2ggaXMgMS40MjNlLTEwCiogKDExOTEwIC8gMikgKiAzLjQ4OWUtMjIgd2hpY2ggaXMgMi4wNzhlLTE4CiogKDExOTEwIC8gMykgKiA5LjYxMmUtMjIgd2hpY2ggaXMgMy44MTZlLTE4CiogKDExOTEwIC8gNCkgKiA0Ljg1M2UtMTggd2hpY2ggaXMgMS40NDVlLTE0CiogKDExOTEwIC8gNSkgKiA5Ljg2NGUtMTUgd2hpY2ggaXMgMi4zNTBlLTExCiogKDExOTEwIC8gNikgKiAzLjI3NWUtMTQgd2hpY2ggaXMgNi41MDFlLTExCgpJbiBjb250cmFzdCwgY29uc2lkZXIgdGhlIGZpcnN0IGZldyB2YWx1ZXMgZnJvbSBkcmVhbSBvcmRlcmVkIGluIHRoZQpzYW1lIGZhc2hpb246CjIuMTYyZS0wNywgMy43NTdlLTA1LCA4LjExOWUtMDUsIDEuNjY0ZS0wNCwgMy4xMjNlLTA0LCA1LjYwMGUtMDQKClRoZXNlIHN0YXJ0IGF0IHZhbHVlcyB3aGljaCBhcmUgMWUxNyBoaWdoZXIgdGhhbiB0aG9zZSBmcm9tIERFU2VxIGFuZApzbyB3ZSBjYW4gZXhwZWN0IHRoZSByZXN1bHRpbmcgdmFsdWVzIHRvIGVuZCB1cCBzdGFydGluZyBhdCB+IDVlMTEKaGlnaGVyIHRoYW4gc2ltaWxhciB2YWx1ZXMuICBUaHVzIHdoZW4gd2UgZG8gdGhlIG1hdGggKGFuZCBiZSBhbXVzZWQKYXQgdGhlIGZhY3QgdGhhdCB0aGUgbnVtYmVyIG9mIHAtdmFsdWVzIGluIHRoZSB0YWJsZSBpcyBhIGZhY3RvciBvZgoyLDMsNCw1LDYpOgoKMTE5MTAgKiAyLjE2ZS0wNzogMC4wMDI1NzMKNTk1NSAqIDMuNzU3ZS01OiAwLjIyMzcxMQozOTcwICogOC4xMTllLTU6IDAuMzIyMjk3CjI5NzggKiAxLjY2NGUtNDogMC40OTU1CjIzODIgKiAzLjEyM2UtNDogMC43NDM4MzYKMTk4NSAqIDUuNjAwZS00OiAxLjExMiB3aGljaCBpcyBjYXVnaHQgYnkgcG1pbigpIGFuZCByZXNldCB0byAxLgoKIyBQcmludCBzb21lIHZvbGNhbm8gcGxvdHMKCkhhdmluZyBwZXJmb3JtZWQgYWxsIG9mIHRoZSBhYm92ZSwgbGV0IHVzIHBsb3Qgc29tZSBvZiB0aGUgcmVzdWx0cwp3aXRoIGEgZmV3IGxhYmVscyBvZiB0aGUgdG9wLTEwIGdlbmVzIG9uIGVhY2ggc2lkZSBvZiB0aGUgY29udHJhc3RzLgoKYGBge3J9Cm51bV9jb2xvciA8LSBjb2xvcl9jaG9pY2VzW1siY2xpbmljX2NmIl1dW1sidHVtYWNvX2ZhaWx1cmUiXV0KZGVuX2NvbG9yIDwtIGNvbG9yX2Nob2ljZXNbWyJjbGluaWNfY2YiXV1bWyJ0dW1hY29fY3VyZSJdXQoKY2ZfbW9ub2N5dGVfdGFibGUgPC0gdF9jZl9tb25vY3l0ZV90YWJsZV9zdmFbWyJkYXRhIl1dW1sib3V0Y29tZSJdXQpjZl9tb25vY3l0ZV92b2xjYW5vIDwtIHBsb3Rfdm9sY2Fub19jb25kaXRpb25fZGUoCiAgY2ZfbW9ub2N5dGVfdGFibGUsICJvdXRjb21lIiwgbGFiZWwgPSBleHBlY3RlZF9nZW5lcywKICBmY19jb2wgPSAiZGVzZXFfbG9nZmMiLCBwX2NvbCA9ICJkZXNlcV9hZGpwIiwgbGluZV9wb3NpdGlvbiA9IE5VTEwsCiAgY29sb3JfaGlnaCA9IG51bV9jb2xvciwgY29sb3JfbG93ID0gZGVuX2NvbG9yLCBsYWJlbF9zaXplID0gNikKcHAoZmlsZSA9ICJmaWd1cmVzL2NmX21vbm9jeXRlX3ZvbGNhbm9fbGFiZWxlZC5zdmciKQpjZl9tb25vY3l0ZV92b2xjYW5vW1sicGxvdCJdXQpkZXYub2ZmKCkKY2ZfbW9ub2N5dGVfdm9sY2Fub1tbInBsb3QiXV0KCmNmX21vbm9jeXRlX3ZvbGNhbm9fdG9wMTAgPC0gcGxvdF92b2xjYW5vX2NvbmRpdGlvbl9kZSgKICBjZl9tb25vY3l0ZV90YWJsZSwgIm91dGNvbWUiLCBsYWJlbCA9IDEwLAogIGZjX2NvbCA9ICJkZXNlcV9sb2dmYyIsIHBfY29sID0gImRlc2VxX2FkanAiLCBsaW5lX3Bvc2l0aW9uID0gTlVMTCwKICBjb2xvcl9oaWdoID0gbnVtX2NvbG9yLCBjb2xvcl9sb3cgPSBkZW5fY29sb3IsIGxhYmVsX3NpemUgPSA2KQpwcChmaWxlID0gZ2x1ZSgiaW1hZ2VzL2NmX21vbm9jeXRlX3ZvbGNhbm9fbGFiZWxlZF90b3AxMC12e3Zlcn0uc3ZnIikpCmNmX21vbm9jeXRlX3ZvbGNhbm9fdG9wMTBbWyJwbG90Il1dCmRldi5vZmYoKQpjZl9tb25vY3l0ZV92b2xjYW5vX3RvcDEwW1sicGxvdCJdXQoKY2ZfZW9zaW5vcGhpbF90YWJsZSA8LSB0X2NmX2Vvc2lub3BoaWxfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0KY2ZfZW9zaW5vcGhpbF92b2xjYW5vIDwtIHBsb3Rfdm9sY2Fub19jb25kaXRpb25fZGUoCiAgY2ZfZW9zaW5vcGhpbF90YWJsZSwgIm91dGNvbWUiLCBsYWJlbCA9IGV4cGVjdGVkX2dlbmVzLAogIGZjX2NvbCA9ICJkZXNlcV9sb2dmYyIsIHBfY29sID0gImRlc2VxX2FkanAiLCBsaW5lX3Bvc2l0aW9uID0gTlVMTCwKICBjb2xvcl9oaWdoID0gbnVtX2NvbG9yLCBjb2xvcl9sb3cgPSBkZW5fY29sb3IsIGxhYmVsX3NpemUgPSA2KQpwcChmaWxlID0gImZpZ3VyZXMvY2ZfZW9zaW5vcGhpbF92b2xjYW5vX2xhYmVsZWQuc3ZnIikKY2ZfZW9zaW5vcGhpbF92b2xjYW5vW1sicGxvdCJdXQpkZXYub2ZmKCkKY2ZfZW9zaW5vcGhpbF92b2xjYW5vW1sicGxvdCJdXQoKY2ZfZW9zaW5vcGhpbF92b2xjYW5vX3RvcDEwIDwtIHBsb3Rfdm9sY2Fub19jb25kaXRpb25fZGUoCiAgY2ZfZW9zaW5vcGhpbF90YWJsZSwgIm91dGNvbWUiLCBsYWJlbCA9IDEwLAogIGZjX2NvbCA9ICJkZXNlcV9sb2dmYyIsIHBfY29sID0gImRlc2VxX2FkanAiLCBsaW5lX3Bvc2l0aW9uID0gTlVMTCwKICBjb2xvcl9oaWdoID0gbnVtX2NvbG9yLCBjb2xvcl9sb3cgPSBkZW5fY29sb3IsIGxhYmVsX3NpemUgPSA2KQpwcChmaWxlID0gZ2x1ZSgiaW1hZ2VzL2NmX2Vvc2lub3BoaWxfdm9sY2Fub19sYWJlbGVkX3RvcDEwLXZ7dmVyfS5zdmciKSkKY2ZfZW9zaW5vcGhpbF92b2xjYW5vX3RvcDEwW1sicGxvdCJdXQpkZXYub2ZmKCkKY2ZfZW9zaW5vcGhpbF92b2xjYW5vX3RvcDEwW1sicGxvdCJdXQoKY2ZfbmV1dHJvcGhpbF90YWJsZSA8LSB0X2NmX25ldXRyb3BoaWxfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0KY2ZfbmV1dHJvcGhpbF92b2xjYW5vIDwtIHBsb3Rfdm9sY2Fub19jb25kaXRpb25fZGUoCiAgY2ZfbmV1dHJvcGhpbF90YWJsZSwgIm91dGNvbWUiLCBsYWJlbCA9IF9nZW5lcywKICBmY19jb2wgPSAiZGVzZXFfbG9nZmMiLCBwX2NvbCA9ICJkZXNlcV9hZGpwIiwgbGluZV9wb3NpdGlvbiA9IE5VTEwsCiAgY29sb3JfaGlnaCA9IG51bV9jb2xvciwgY29sb3JfbG93ID0gZGVuX2NvbG9yLCBsYWJlbF9zaXplID0gNikKcHAoZmlsZSA9ICJmaWd1cmVzL2NmX25ldXRyb3BoaWxfdm9sY2Fub19sYWJlbGVkLnN2ZyIpCmNmX25ldXRyb3BoaWxfdm9sY2Fub1tbInBsb3QiXV0KZGV2Lm9mZigpCmNmX25ldXRyb3BoaWxfdm9sY2Fub1tbInBsb3QiXV0KCmNmX25ldXRyb3BoaWxfdm9sY2Fub190b3AxMCA8LSBwbG90X3ZvbGNhbm9fY29uZGl0aW9uX2RlKAogIGNmX25ldXRyb3BoaWxfdGFibGUsICJvdXRjb21lIiwgbGFiZWwgPSAxMCwKICBmY19jb2wgPSAiZGVzZXFfbG9nZmMiLCBwX2NvbCA9ICJkZXNlcV9hZGpwIiwgbGluZV9wb3NpdGlvbiA9IE5VTEwsCiAgY29sb3JfaGlnaCA9IG51bV9jb2xvciwgY29sb3JfbG93ID0gZGVuX2NvbG9yLCBsYWJlbF9zaXplID0gNikKcHAoZmlsZSA9IGdsdWUoImltYWdlcy9jZl9uZXV0cm9waGlsX3ZvbGNhbm9fbGFiZWxlZF90b3AxMC12e3Zlcn0uc3ZnIikpCmNmX25ldXRyb3BoaWxfdm9sY2Fub190b3AxMFtbInBsb3QiXV0KZGV2Lm9mZigpCmNmX25ldXRyb3BoaWxfdm9sY2Fub190b3AxMFtbInBsb3QiXV0KYGBgCgojIEVvc2lub3BoaWwgdGltZSBjb21wYXJpc29ucwoKIyMgVmlzaXQgMQoKYGBge3J9CnRfY2ZfZW9zaW5vcGhpbF92MV9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHR2MV9lb3Npbm9waGlscywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRfY2ZfZW9zaW5vcGhpbF92MV9kZV9zdmEKdF9jZl9lb3Npbm9waGlsX3YxX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX2Vvc2lub3BoaWxfdjFfZGVfc3ZhLCBrZWVwZXJzID0gdF9jZl9jb250cmFzdCwgc2NhbGVfcCA9IFRSVUUsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfdjFfY2ZfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfZW9zaW5vcGhpbF92MV90YWJsZV9zdmEKdF9jZl9lb3Npbm9waGlsX3YxX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX2Vvc2lub3BoaWxfdjFfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vRW9zaW5vcGhpbHMvdF9lb3Npbm9waGlsX3YxX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9lb3Npbm9waGlsX3YxX3RhYmxlX3N2YQoKZGltKHRfY2ZfZW9zaW5vcGhpbF92MV9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9lb3Npbm9waGlsX3YxX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKYGBgCgojIyBWaXNpdCAyCgpgYGB7cn0KdF9jZl9lb3Npbm9waGlsX3YyX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodHYyX2Vvc2lub3BoaWxzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdF9jZl9lb3Npbm9waGlsX3YyX2RlX3N2YQp0X2NmX2Vvc2lub3BoaWxfdjJfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2ZfZW9zaW5vcGhpbF92Ml9kZV9zdmEsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L0Vvc2lub3BoaWxzL3RfZW9zaW5vcGhpbF92Ml9jZl90YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9lb3Npbm9waGlsX3YyX3RhYmxlX3N2YQp0X2NmX2Vvc2lub3BoaWxfdjJfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2ZfZW9zaW5vcGhpbF92Ml90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfdjJfY2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX2Vvc2lub3BoaWxfdjJfc2lnX3N2YQoKZGltKHRfY2ZfZW9zaW5vcGhpbF92Ml9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9lb3Npbm9waGlsX3YyX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKYGBgCgojIyBWaXNpdCAzCgpgYGB7cn0KdF9jZl9lb3Npbm9waGlsX3YzX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodHYzX2Vvc2lub3BoaWxzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdF9jZl9lb3Npbm9waGlsX3YzX2RlX3N2YQp0X2NmX2Vvc2lub3BoaWxfdjNfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2ZfZW9zaW5vcGhpbF92M19kZV9zdmEsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L0Vvc2lub3BoaWxzL3RfZW9zaW5vcGhpbF92M19jZl90YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9lb3Npbm9waGlsX3YzX3RhYmxlX3N2YQp0X2NmX2Vvc2lub3BoaWxfdjNfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2ZfZW9zaW5vcGhpbF92M190YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfdjNfY2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX2Vvc2lub3BoaWxfdjNfc2lnX3N2YQoKZGltKHRfY2ZfZW9zaW5vcGhpbF92M19zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9lb3Npbm9waGlsX3YzX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKYGBgCgojIyBFb3Npbm9waGlsczogQ29tcGFyZSBzdmEgdG8gYmF0Y2gtaW4tdmlzaXQKCmBgYHtyfQpzdmFfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyh0X2NmX2Vvc2lub3BoaWxfdGFibGVfc3ZhW1siZGF0YSJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgICAgICB0YmwyID0gdF9jZl9lb3Npbm9waGlsX3RhYmxlX2JhdGNodmlzaXRbWyJkYXRhIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHB5ID0gImRlc2VxX2FkanAiLCBseSA9ICJkZXNlcV9sb2dmYyIpCnN2YV9hdWNjCgpzaGFyZWRfaWRzIDwtIHJvd25hbWVzKHRfY2ZfZW9zaW5vcGhpbF90YWJsZV9zdmFbWyJkYXRhIl1dW1sxXV0pICVpbiUKICByb3duYW1lcyh0X2NmX2Vvc2lub3BoaWxfdGFibGVfYmF0Y2h2aXNpdFtbImRhdGEiXV1bWzFdXSkKZmlyc3QgPC0gdF9jZl9lb3Npbm9waGlsX3RhYmxlX3N2YVtbImRhdGEiXV1bWzFdXVtzaGFyZWRfaWRzLCBdCnNlY29uZCA8LSB0X2NmX2Vvc2lub3BoaWxfdGFibGVfYmF0Y2h2aXNpdFtbImRhdGEiXV1bWzFdXVtyb3duYW1lcyhmaXJzdCksIF0KY29yLnRlc3QoZmlyc3RbWyJkZXNlcV9sb2dmYyJdXSwgc2Vjb25kW1siZGVzZXFfbG9nZmMiXV0pCmBgYAoKIyMgQ29tcGFyZSBtb25vY3l0ZSBDRiwgbmV1dHJvcGhpbCBDRiwgZW9zaW5vcGhpbCBDRgoKYGBge3J9CnRfbW9ub19uZXV0X3N2YV9hdWNjIDwtIGNhbGN1bGF0ZV9hdWNjKHRfY2ZfbW9ub2N5dGVfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRibDIgPSB0X2NmX25ldXRyb3BoaWxfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB5ID0gImRlc2VxX2FkanAiLCBseSA9ICJkZXNlcV9sb2dmYyIpCnRfbW9ub19uZXV0X3N2YV9hdWNjCgp0X21vbm9fZW9fc3ZhX2F1Y2MgPC0gY2FsY3VsYXRlX2F1Y2ModF9jZl9tb25vY3l0ZV90YWJsZV9zdmFbWyJkYXRhIl1dW1sib3V0Y29tZSJdXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRibDIgPSB0X2NmX2Vvc2lub3BoaWxfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBweSA9ICJkZXNlcV9hZGpwIiwgbHkgPSAiZGVzZXFfbG9nZmMiKQp0X21vbm9fZW9fc3ZhX2F1Y2MKCnRfbmV1dF9lb19zdmFfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyh0X2NmX25ldXRyb3BoaWxfdGFibGVfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0YmwyID0gdF9jZl9lb3Npbm9waGlsX3RhYmxlX3N2YVtbImRhdGEiXV1bWyJvdXRjb21lIl1dLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHkgPSAiZGVzZXFfYWRqcCIsIGx5ID0gImRlc2VxX2xvZ2ZjIikKdF9uZXV0X2VvX3N2YV9hdWNjCmBgYAoKIyBCeSB2aXNpdAoKRm9yIHRoZXNlIGNvbnRyYXN0cywgd2Ugd2FudCB0byBzZWUgZmFpbF92MSB2cy4gY3VyZV92MSwgZmFpbF92Mgp2cy4gY3VyZV92MiBldGMuICBBcyBhIHJlc3VsdCwgd2Ugd2lsbCBuZWVkIHRvIGp1Z2dsZSB0aGUgZGF0YQpzbGlnaHRseSBhbmQgYWRkIGFub3RoZXIgc2V0IG9mIGNvbnRyYXN0cy4KCiMjIEN1cmUvRmFpbCBieSB2aXNpdHMsIGFsbCBjZWxsIHR5cGVzCgpgYGB7cn0KdF92aXNpdF9jZl9hbGxfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X3Zpc2l0Y2YsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdF92aXNpdF9jZl9hbGxfZGVfc3ZhCnRfdmlzaXRfY2ZfYWxsX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X3Zpc2l0X2NmX2FsbF9kZV9zdmEsIGtlZXBlcnMgPSB2aXNpdGNmX2NvbnRyYXN0cywgc2NhbGVfcCA9IFRSVUUsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS90X2FsbF92aXNpdGNmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X3Zpc2l0X2NmX2FsbF90YWJsZV9zdmEKdF92aXNpdF9jZl9hbGxfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfdmlzaXRfY2ZfYWxsX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L3RfYWxsX3Zpc2l0Y2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQp0X3Zpc2l0X2NmX2FsbF9zaWdfc3ZhCmBgYAoKIyMgQ3VyZS9GYWlsIGJ5IHZpc2l0LCBNb25vY3l0ZXMKCkluIHRoZSBmb2xsb3dpbmcgYmxvY2ssIEkgYW0gaW5jbHVkaW5nIGFsbCBzYW1wbGVzIGZvciB0aGUgbW9ub2N5dGVzCmFuZCBzcGxpdHRpbmcgdGhlbSB1cCBieSB2aXNpdCBhbmQgdGhlbiBjb21wYXJpbmcgdjEgY3VyZS9mYWlsLCB2MgpjdXJlL2ZhaWwsIHYzIGN1cmUvZmFpbC4KCkkgZXhwZWN0IHRoYXQgdGhpcyBzaG91bGQgYmUgbW9yZSByb2J1c3QgdGhhbiB0aGUgZGF0YXNldHMgb2Ygb25seQp2aXNpdCAxLgoKYGBge3J9CnZpc2l0Y2ZfZmFjdG9yIDwtIHBhc3RlMCgidiIsIHBEYXRhKHRfbW9ub2N5dGVzKVtbInZpc2l0bnVtYmVyIl1dLCAiXyIsCiAgICAgICAgICAgICAgICAgICAgICAgICBwRGF0YSh0X21vbm9jeXRlcylbWyJmaW5hbG91dGNvbWUiXV0pCnRfbW9ub2N5dGVzX3Zpc2l0Y2YgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0X21vbm9jeXRlcywgZmFjdCA9IHZpc2l0Y2ZfZmFjdG9yKQoKdF92aXNpdF9jZl9tb25vY3l0ZV9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRfbW9ub2N5dGVzX3Zpc2l0Y2YsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRfdmlzaXRfY2ZfbW9ub2N5dGVfZGVfc3ZhCnRfdmlzaXRfY2ZfbW9ub2N5dGVfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfdmlzaXRfY2ZfbW9ub2N5dGVfZGVfc3ZhLCBrZWVwZXJzID0gdmlzaXRjZl9jb250cmFzdHMsIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vTW9ub2N5dGVzL3RfbW9ub2N5dGVfdmlzaXRjZl90YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdF92aXNpdF9jZl9tb25vY3l0ZV90YWJsZV9zdmEKdF92aXNpdF9jZl9tb25vY3l0ZV9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF92aXNpdF9jZl9tb25vY3l0ZV90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7Y2ZfcHJlZml4fS9Nb25vY3l0ZXMvdF9tb25vY3l0ZV92aXNpdGNmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF92aXNpdF9jZl9tb25vY3l0ZV9zaWdfc3ZhCgp0X3YxZmNfZGVzZXFfbWEgPC0gdF92aXNpdF9jZl9tb25vY3l0ZV90YWJsZV9zdmFbWyJwbG90cyJdXVtbInYxY2YiXV1bWyJkZXNlcV9tYV9wbG90cyJdXQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvbW9ub2N5dGVfY2ZfZGVfdjFfbWFwbG90LnBuZyIpCnRfdjFmY19kZXNlcV9tYQpjbG9zZWQgPC0gZGV2Lm9mZigpCnRfdjFmY19kZXNlcV9tYQoKdF92MmZjX2Rlc2VxX21hIDwtIHRfdmlzaXRfY2ZfbW9ub2N5dGVfdGFibGVfc3ZhW1sicGxvdHMiXV1bWyJ2MmNmIl1dW1siZGVzZXFfbWFfcGxvdHMiXV0KZGV2IDwtIHBwKGZpbGUgPSAiaW1hZ2VzL21vbm9jeXRlX2NmX2RlX3YyX21hcGxvdC5wbmciKQp0X3YyZmNfZGVzZXFfbWEKY2xvc2VkIDwtIGRldi5vZmYoKQp0X3YyZmNfZGVzZXFfbWEKCnRfdjNmY19kZXNlcV9tYSA8LSB0X3Zpc2l0X2NmX21vbm9jeXRlX3RhYmxlX3N2YVtbInBsb3RzIl1dW1sidjNjZiJdXVtbImRlc2VxX21hX3Bsb3RzIl1dCmRldiA8LSBwcChmaWxlID0gImltYWdlcy9tb25vY3l0ZV9jZl9kZV92M19tYXBsb3QucG5nIikKdF92M2ZjX2Rlc2VxX21hCmNsb3NlZCA8LSBkZXYub2ZmKCkKdF92M2ZjX2Rlc2VxX21hCmBgYAoKT25lIHF1ZXJ5IGZyb20gQWxlamFuZHJvIGlzIHRvIGxvb2sgYXQgdGhlIGdlbmVzIHNoYXJlZCB1cC9kb3duIGFjcm9zcwp2aXNpdHMuICBJIGFtIG5vdCBlbnRpcmVseSBjZXJ0YWluIHdlIGhhdmUgZW5vdWdoIHNhbXBsZXMgZm9yIHRoaXMgdG8Kd29yaywgYnV0IGxldCB1cyBmaW5kIG91dC4KCkkgYW0gdGhpbmtpbmcgdGhpcyBpcyBhIGdvb2QgcGxhY2UgdG8gdXNlIHRoZSBBVUNDIGN1cnZlcyBJIGxlYXJuZWQKYWJvdXQgdGhhbmtzIHRvIEp1bGllIENyaWRsYW5kLgoKTm90ZSB0aGF0IHRoZSBmb2xsb3dpbmcgaXMgYWxsIG1vbm9jeXRlIHNhbXBsZXMsIHRoaXMgc2hvdWxkIHRoZXJlZm9yZQpwb3RlbnRpYWxseSBiZSBtb3ZlZCB1cCBhbmQgYSB2ZXJzaW9uIG9mIHRoaXMgd2l0aCBvbmx5IHRoZSBUdW1hY28Kc2FtcGxlcyBwdXQgaGVyZT8KCmBgYHtyfQp2MWNmIDwtIHRfdmlzaXRfY2ZfbW9ub2N5dGVfdGFibGVfc3ZhW1siZGF0YSJdXVtbInYxY2YiXV0KdjJjZiA8LSB0X3Zpc2l0X2NmX21vbm9jeXRlX3RhYmxlX3N2YVtbImRhdGEiXV1bWyJ2MmNmIl1dCnYzY2YgPC0gdF92aXNpdF9jZl9tb25vY3l0ZV90YWJsZV9zdmFbWyJkYXRhIl1dW1sidjNjZiJdXQoKdjFfc2lnIDwtIGMoCiAgcm93bmFtZXModF92aXNpdF9jZl9tb25vY3l0ZV9zaWdfc3ZhW1siZGVzZXEiXV1bWyJ1cHMiXV1bWyJ2MWNmIl1dKSwKICByb3duYW1lcyh0X3Zpc2l0X2NmX21vbm9jeXRlX3NpZ19zdmFbWyJkZXNlcSJdXVtbImRvd25zIl1dW1sidjFjZiJdXSkpCmxlbmd0aCh2MV9zaWcpCgp2Ml9zaWcgPC0gYygKICByb3duYW1lcyh0X3Zpc2l0X2NmX21vbm9jeXRlX3NpZ19zdmFbWyJkZXNlcSJdXVtbInVwcyJdXVtbInYyY2YiXV0pLAogIHJvd25hbWVzKHRfdmlzaXRfY2ZfbW9ub2N5dGVfc2lnX3N2YVtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJ2MmNmIl1dKSkKbGVuZ3RoKHYyX3NpZykKCnYzX3NpZyA8LSBjKAogIHJvd25hbWVzKHRfdmlzaXRfY2ZfbW9ub2N5dGVfc2lnX3N2YVtbImRlc2VxIl1dW1sidXBzIl1dW1sidjJjZiJdXSksCiAgcm93bmFtZXModF92aXNpdF9jZl9tb25vY3l0ZV9zaWdfc3ZhW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbInYyY2YiXV0pKQpsZW5ndGgodjNfc2lnKQoKdF9tb25vY3l0ZV92aXNpdF9hdWNjX3YydjEgPC0gY2FsY3VsYXRlX2F1Y2ModjFjZiwgdGJsMiA9IHYyY2YsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB5ID0gImRlc2VxX2FkanAiLCBseSA9ICJkZXNlcV9sb2dmYyIpCmRldiA8LSBwcChmaWxlID0gImltYWdlcy9tb25vY3l0ZV92aXNpdF92MnYxX2F1Y2MucG5nIikKdF9tb25vY3l0ZV92aXNpdF9hdWNjX3YydjFbWyJwbG90Il1dCmNsb3NlZCA8LSBkZXYub2ZmKCkKdF9tb25vY3l0ZV92aXNpdF9hdWNjX3YydjFbWyJwbG90Il1dCgp0X21vbm9jeXRlX3Zpc2l0X2F1Y2NfdjN2MSA8LSBjYWxjdWxhdGVfYXVjYyh2MWNmLCB0YmwyID0gdjNjZiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHkgPSAiZGVzZXFfYWRqcCIsIGx5ID0gImRlc2VxX2xvZ2ZjIikKZGV2IDwtIHBwKGZpbGUgPSAiaW1hZ2VzL21vbm9jeXRlX3Zpc2l0X3YzdjFfYXVjYy5wbmciKQp0X21vbm9jeXRlX3Zpc2l0X2F1Y2NfdjN2MVtbInBsb3QiXV0KY2xvc2VkIDwtIGRldi5vZmYoKQp0X21vbm9jeXRlX3Zpc2l0X2F1Y2NfdjN2MVtbInBsb3QiXV0KYGBgCgojIyBDdXJlL0ZhaWwgYnkgdmlzaXQsIE5ldXRyb3BoaWxzCgpgYGB7cn0KdmlzaXRjZl9mYWN0b3IgPC0gcGFzdGUwKCJ2IiwgcERhdGEodF9uZXV0cm9waGlscylbWyJ2aXNpdG51bWJlciJdXSwgIl8iLAogICAgICAgICAgICAgICAgICAgICAgICAgcERhdGEodF9uZXV0cm9waGlscylbWyJmaW5hbG91dGNvbWUiXV0pCnRfbmV1dHJvcGhpbF92aXNpdGNmIDwtIHNldF9leHB0X2NvbmRpdGlvbnModF9uZXV0cm9waGlscywgZmFjdCA9IHZpc2l0Y2ZfZmFjdG9yKQoKdF92aXNpdF9jZl9uZXV0cm9waGlsX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF9uZXV0cm9waGlsX3Zpc2l0Y2YsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFsbGVsID0gcGFyYWxsZWwsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZHMgPSBtZXRob2RzKQp0X3Zpc2l0X2NmX25ldXRyb3BoaWxfZGVfc3ZhCnRfdmlzaXRfY2ZfbmV1dHJvcGhpbF90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF92aXNpdF9jZl9uZXV0cm9waGlsX2RlX3N2YSwga2VlcGVycyA9IHZpc2l0Y2ZfY29udHJhc3RzLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF92aXNpdGNmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X3Zpc2l0X2NmX25ldXRyb3BoaWxfdGFibGVfc3ZhCnRfdmlzaXRfY2ZfbmV1dHJvcGhpbF9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF92aXNpdF9jZl9uZXV0cm9waGlsX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoIntjZl9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF92aXNpdGNmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF92aXNpdF9jZl9uZXV0cm9waGlsX3NpZ19zdmEKYGBgCgojIyBDdXJlL0ZhaWwgYnkgdmlzaXQsIEVvc2lub3BoaWxzCgpgYGB7cn0KdmlzaXRjZl9mYWN0b3IgPC0gcGFzdGUwKCJ2IiwgcERhdGEodF9lb3Npbm9waGlscylbWyJ2aXNpdG51bWJlciJdXSwgIl8iLAogICAgICAgICAgICAgICAgICAgICAgICAgcERhdGEodF9lb3Npbm9waGlscylbWyJmaW5hbG91dGNvbWUiXV0pCnRfZW9zaW5vcGhpbF92aXNpdGNmIDwtIHNldF9leHB0X2NvbmRpdGlvbnModF9lb3Npbm9waGlscywgZmFjdCA9IHZpc2l0Y2ZfZmFjdG9yKQoKdF92aXNpdF9jZl9lb3Npbm9waGlsX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF9lb3Npbm9waGlsX3Zpc2l0Y2YsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFsbGVsID0gcGFyYWxsZWwsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZHMgPSBtZXRob2RzLCBrZWVwZXJzID0gdmlzaXRjZl9jb250cmFzdHMpCnRfdmlzaXRfY2ZfZW9zaW5vcGhpbF9kZV9zdmEKdF92aXNpdF9jZl9lb3Npbm9waGlsX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X3Zpc2l0X2NmX2Vvc2lub3BoaWxfZGVfc3ZhLCBrZWVwZXJzID0gdmlzaXRjZl9jb250cmFzdHMsIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vRW9zaW5vcGhpbHMvdF9lb3Npbm9waGlsX3Zpc2l0Y2ZfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRfdmlzaXRfY2ZfZW9zaW5vcGhpbF90YWJsZV9zdmEKdF92aXNpdF9jZl9lb3Npbm9waGlsX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X3Zpc2l0X2NmX2Vvc2lub3BoaWxfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgie2NmX3ByZWZpeH0vRW9zaW5vcGhpbHMvdF9lb3Npbm9waGlsX3Zpc2l0Y2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQp0X3Zpc2l0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YQpgYGAKCiMgU2hhcmVkIGdlbmVzIGluIHZpc2l0IDEKCkxldCB1cyBzZWUgaG93IG1hbnkgZ2VuZXMgYXJlIHNoYXJlZCBhY3Jvc3MgdGhlc2UgdGhyZWUgdmlzaXRzIHVzaW5nCm9ubHkgdGhlIHZpc2l0IDEgZGF0YS4KCgpgYGB7cn0Kb2JzZXJ2ZWRfdjFfZW9zaW5vcGhpbHMgPC0gYygKICByb3duYW1lcyh0X2NmX2Vvc2lub3BoaWxfdjFfc2lnX3N2YVtbImRlc2VxIl1dW1sidXBzIl1dW1sib3V0Y29tZSJdXSksCiAgcm93bmFtZXModF9jZl9lb3Npbm9waGlsX3YxX3NpZ19zdmFbWyJkZXNlcSJdXVtbImRvd25zIl1dW1sib3V0Y29tZSJdXSkpCm9ic2VydmVkX3YxX21vbm9jeXRlcyA8LSBjKAogIHJvd25hbWVzKHRfY2ZfbW9ub2N5dGVfdjFfc2lnX3N2YVtbImRlc2VxIl1dW1sidXBzIl1dW1sib3V0Y29tZSJdXSksCiAgcm93bmFtZXModF9jZl9tb25vY3l0ZV92MV9zaWdfc3ZhW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbIm91dGNvbWUiXV0pKQpvYnNlcnZlZF92MV9uZXV0cm9waGlscyA8LSBjKAogIHJvd25hbWVzKHRfY2ZfbmV1dHJvcGhpbF92MV9zaWdfc3ZhW1siZGVzZXEiXV1bWyJ1cHMiXV1bWyJvdXRjb21lIl1dKSwKICByb3duYW1lcyh0X2NmX25ldXRyb3BoaWxfdjFfc2lnX3N2YVtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJvdXRjb21lIl1dKSkKdmVubl9pbnB1dCA8LSBsaXN0KAogICJlb3Npbm9waGlsIiA9IG9ic2VydmVkX3YxX2Vvc2lub3BoaWxzLAogICJtb25vY3l0ZSIgPSBvYnNlcnZlZF92MV9tb25vY3l0ZXMsCiAgIm5ldXRyb3BoaWxzIiA9IG9ic2VydmVkX3YxX25ldXRyb3BoaWxzKQpzaGFyZWQgPC0gVmVubmVyYWJsZTo6VmVubih2ZW5uX2lucHV0KQpzaGFyZWQKVmVubmVyYWJsZTo6cGxvdChzaGFyZWQpCmBgYAoKTmFqaWIgc3VnZ2VzdHMgdGhhdCB3ZSBzaG91bGQgbG9vayBhdCBhbGwgY2VsbCB0eXBlcyB0b2dldGhlciBhdAp2aXNpdCAxLiAgTGV0IHVzIHRyeSBhbmQgc2VlIHdoYXQgaGFwcGVucy4uLiAgT2gsIEkgYWxyZWFkeSBkaWQgdGhpcwppbiB0aGUgYmxvY2sgJ1NlcGFyYXRlIHRoZSBUdW1hY28gZGF0YSBieSB2aXNpdCcgYWJvdmUuCgpMZXQgdXMgYWRkIGEgbmV3IGJsb2NrIGluIHdoaWNoIHdlIHRlc3QgYSBjb25jZXJuOiBpZiB3ZSBleHBsaWNpdGx5CmFkZCB2aXNpdCB0byB0aGUgbW9kZWwgKHdpdGggc3ZhLCBwb3RlbnRpYWxseSB3aXRob3V0IHRvbyksIHdpbGwgdGhhdApjaGFuZ2UgdGhlIHJlc3VsdHMgd2Ugb2JzZXJ2ZT8gIE15IGFzc3VtcHRpb24gaXMgdGhhdCBpdCBzaG91bGQgY2hhbmdlCnRoZSByZXN1bHRzIHZlcnkgbWluaW1hbGx5OyBidXQgd2Ugc2hvdWxkIG1ha2UgYWJzb2x1dGVseSBjZXJ0YWluIHRoYXQKdGhpcyBpcyB0cnVlLiAgVGhlIG5ldXRyb3BoaWxzIGFyZSB0aGUgcGxhY2UgdG8gdGVzdCB0aGlzIGZpcnN0CmJlY2F1c2UgdGhleSBoYXZlIHNvbWUgb2YgdGhlIG1vc3QgdmFyaWFuY2Ugb2JzZXJ2ZWQgaW4gdGhlIGRhdGEuCgpUaGVyZWZvcmUgSSB3YW50IHRvIGhhdmUgYW4gaW5zdGFuY2Ugb2YgdGhlIHBhaXJ3aXNlIGNvbnRyYXN0IHRoYXQgaGFzCmEgbW9kZWwgb2YgfiBmaW5hbG91dGNvbWUgKyB2aXNpdG51bWJlciArIFNWcyB3aGVyZSB0aGUgU1ZzIGNvbWUgZnJvbQphbiBpbnZvY2F0aW9uIG9mIHN2YSB3aGljaCBhbHNvIGhhcyBmaW5hbG91dGNvbWUgKyB2aXNpdG51bWJlciBiZWZvcmUKdGhlIG51bGwgbW9kZWwuCgpJbiB0aGVvcnksIGFsbF9wYWlyd2lzZSgpIGlzIGFibGUgdG8gZG8gdGhpcyB2aWEgdGhlIGFyZ3VtZW50CmFsdF9tb2RlbCwgYnV0IGl0IG1heSBiZSBzYWZlciB0byBkbyBpdCBtYW51YWxseSBpbiBvcmRlciB0bwphYnNvbHV0ZWx5IGVuc3VyZSB0aGF0IG5vdGhpbmcgdW5pbnRlbmRlZCBoYXBwZW5zLgoKIyBQZXJzaXN0ZW5jZSBpbiB2aXNpdCAzCgpIYXZpbmcgcHV0IHNvbWUgU0wgcmVhZCBtYXBwaW5nIGluZm9ybWF0aW9uIGluIHRoZSBzYW1wbGUgc2hlZXQsIE1hcmlhCkFkZWxhaWRhIGFkZGVkIGEgbmV3IGNvbHVtbiB1c2luZyBpdCB3aXRoIHRoZSBwdXRhdGl2ZSBwZXJzaXN0ZW5jZQpzdGF0ZSBvbiBhIHBlci1zYW1wbGUgYmFzaXMuICBPbmUgcXVlc3Rpb24gd2hpY2ggYXJpc2VkIGZyb20gdGhhdDoKd2hhdCBkaWZmZXJlbmNlcyBhcmUgb2JzZXJ2YWJsZSBiZXR3ZWVuIHRoZSBwZXJzaXN0ZW50IHllcyB2cy4gbm8Kc2FtcGxlcyBvbiBhIHBlci1jZWxsLXR5cGUgYmFzaXMgYW1vbmcgdGhlIHZpc2l0IDMgc2FtcGxlcy4KCiMjIFNldHRpbmcgdXAKCkZpcnN0IHRoaW5ncyBmaXJzdCwgY3JlYXRlIHRoZSBkYXRhc2V0cy4KCmBgYHtyfQpwZXJzaXN0ZW5jZV9leHB0IDwtIHN1YnNldF9leHB0KHRfY2xpbmljYWwsIHN1YnNldCA9ICJwZXJzaXN0ZW5jZT09J1knfHBlcnNpc3RlbmNlPT0nTiciKSAlPiUKICBzdWJzZXRfZXhwdChzdWJzZXQgPSAndmlzaXRudW1iZXI9PTMnKSAlPiUKICBzZXRfZXhwdF9jb25kaXRpb25zKGZhY3QgPSAncGVyc2lzdGVuY2UnKQoKIyMgcGVyc2lzdGVuY2VfYmlvcHN5IDwtIHN1YnNldF9leHB0KHBlcnNpc3RlbmNlX2V4cHQsIHN1YnNldCA9ICJ0eXBlb2ZjZWxscz09J2Jpb3BzeSciKQpwZXJzaXN0ZW5jZV9tb25vY3l0ZSA8LSBzdWJzZXRfZXhwdChwZXJzaXN0ZW5jZV9leHB0LCBzdWJzZXQgPSAidHlwZW9mY2VsbHM9PSdtb25vY3l0ZXMnIikKcGVyc2lzdGVuY2VfbmV1dHJvcGhpbCA8LSBzdWJzZXRfZXhwdChwZXJzaXN0ZW5jZV9leHB0LCBzdWJzZXQgPSAidHlwZW9mY2VsbHM9PSduZXV0cm9waGlscyciKQpwZXJzaXN0ZW5jZV9lb3Npbm9waGlsIDwtIHN1YnNldF9leHB0KHBlcnNpc3RlbmNlX2V4cHQsIHN1YnNldCA9ICJ0eXBlb2ZjZWxscz09J2Vvc2lub3BoaWxzJyIpCmBgYAoKIyMgVGFrZSBhIGxvb2sKClNlZSBpZiB0aGVyZSBhcmUgYW55IHBhdHRlcm5zIHdoaWNoIGxvb2sgdXNhYmxlLgoKYGBge3J9CiMjIEFsbApwZXJzaXN0ZW5jZV9ub3JtIDwtIG5vcm1hbGl6ZV9leHB0KHBlcnNpc3RlbmNlX2V4cHQsIHRyYW5zZm9ybSA9ICJsb2cyIiwgY29udmVydCA9ICJjcG0iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5vcm0gPSAicXVhbnQiLCBmaWx0ZXIgPSBUUlVFKQpwbG90X3BjYShwZXJzaXN0ZW5jZV9ub3JtKVtbInBsb3QiXV0KcGVyc2lzdGVuY2VfbmIgPC0gbm9ybWFsaXplX2V4cHQocGVyc2lzdGVuY2VfZXhwdCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCnBsb3RfcGNhKHBlcnNpc3RlbmNlX25iKVtbInBsb3QiXV0KCiMjIEJpb3BzaWVzCiMjcGVyc2lzdGVuY2VfYmlvcHN5X25vcm0gPC0gbm9ybWFsaXplX2V4cHQocGVyc2lzdGVuY2VfYmlvcHN5LCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKIyMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5vcm0gPSAicXVhbnQiLCBmaWx0ZXIgPSBUUlVFKQojI3Bsb3RfcGNhKHBlcnNpc3RlbmNlX2Jpb3BzeV9ub3JtKVtbInBsb3QiXV0KIyMgSW5zdWZmaWNpZW50IGRhdGEKCiMjIE1vbm9jeXRlcwpwZXJzaXN0ZW5jZV9tb25vY3l0ZV9ub3JtIDwtIG5vcm1hbGl6ZV9leHB0KHBlcnNpc3RlbmNlX21vbm9jeXRlLCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBub3JtID0gInF1YW50IiwgZmlsdGVyID0gVFJVRSkKcGxvdF9wY2EocGVyc2lzdGVuY2VfbW9ub2N5dGVfbm9ybSlbWyJwbG90Il1dCnBlcnNpc3RlbmNlX21vbm9jeXRlX25iIDwtIG5vcm1hbGl6ZV9leHB0KHBlcnNpc3RlbmNlX21vbm9jeXRlLCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKcGxvdF9wY2EocGVyc2lzdGVuY2VfbW9ub2N5dGVfbmIpW1sicGxvdCJdXQoKIyMgTmV1dHJvcGhpbHMKcGVyc2lzdGVuY2VfbmV1dHJvcGhpbF9ub3JtIDwtIG5vcm1hbGl6ZV9leHB0KHBlcnNpc3RlbmNlX25ldXRyb3BoaWwsIHRyYW5zZm9ybSA9ICJsb2cyIiwgY29udmVydCA9ICJjcG0iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbm9ybSA9ICJxdWFudCIsIGZpbHRlciA9IFRSVUUpCnBsb3RfcGNhKHBlcnNpc3RlbmNlX25ldXRyb3BoaWxfbm9ybSlbWyJwbG90Il1dCnBlcnNpc3RlbmNlX25ldXRyb3BoaWxfbmIgPC0gbm9ybWFsaXplX2V4cHQocGVyc2lzdGVuY2VfbmV1dHJvcGhpbCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKcGxvdF9wY2EocGVyc2lzdGVuY2VfbmV1dHJvcGhpbF9uYilbWyJwbG90Il1dCgojIyBFb3Npbm9waGlscwpwZXJzaXN0ZW5jZV9lb3Npbm9waGlsX25vcm0gPC0gbm9ybWFsaXplX2V4cHQocGVyc2lzdGVuY2VfZW9zaW5vcGhpbCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBub3JtID0gInF1YW50IiwgZmlsdGVyID0gVFJVRSkKcGxvdF9wY2EocGVyc2lzdGVuY2VfZW9zaW5vcGhpbF9ub3JtKVtbInBsb3QiXV0KcGVyc2lzdGVuY2VfZW9zaW5vcGhpbF9uYiA8LSBub3JtYWxpemVfZXhwdChwZXJzaXN0ZW5jZV9lb3Npbm9waGlsLCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQpwbG90X3BjYShwZXJzaXN0ZW5jZV9lb3Npbm9waGlsX25iKVtbInBsb3QiXV0KYGBgCgojIyBwZXJzaXN0ZW5jZSBERQoKVGhpcyBpcyBwcmV0dHkgc3BhcnNlIGFuZCB1bmxpa2VseSB0byB5aWVsZCBhbnkgaW50ZXJlc3RpbmcgcmVzdWx0cyBJCmFtIHRoaW5raW5nLgoKYGBge3J9CnBlcnNpc3RlbmNlX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UocGVyc2lzdGVuY2VfZXhwdCwgZmlsdGVyID0gVFJVRSwgbWV0aG9kcyA9IG1ldGhvZHMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIikKcGVyc2lzdGVuY2VfZGVfc3ZhCnBlcnNpc3RlbmNlX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICBwZXJzaXN0ZW5jZV9kZV9zdmEsIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9ERV9QZXJzaXN0ZW5jZS9wZXJzaXN0ZW5jZV9hbGxfZGVfc3ZhLXZ7dmVyfS54bHN4IikpCnBlcnNpc3RlbmNlX3RhYmxlX3N2YQpwZXJzaXN0ZW5jZV9tb25vY3l0ZV9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHBlcnNpc3RlbmNlX21vbm9jeXRlLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFsbGVsID0gcGFyYWxsZWwsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnBlcnNpc3RlbmNlX21vbm9jeXRlX2RlX3N2YQpwZXJzaXN0ZW5jZV9tb25vY3l0ZV90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgcGVyc2lzdGVuY2VfbW9ub2N5dGVfZGVfc3ZhLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfUGVyc2lzdGVuY2UvcGVyc2lzdGVuY2VfbW9ub2N5dGVfZGVfc3ZhLXZ7dmVyfS54bHN4IikpCnBlcnNpc3RlbmNlX21vbm9jeXRlX3RhYmxlX3N2YQoKcGVyc2lzdGVuY2VfbmV1dHJvcGhpbF9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHBlcnNpc3RlbmNlX25ldXRyb3BoaWwsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnBlcnNpc3RlbmNlX25ldXRyb3BoaWxfZGVfc3ZhCnBlcnNpc3RlbmNlX25ldXRyb3BoaWxfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHBlcnNpc3RlbmNlX25ldXRyb3BoaWxfZGVfc3ZhLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfUGVyc2lzdGVuY2UvcGVyc2lzdGVuY2VfbmV1dHJvcGhpbF9kZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKcGVyc2lzdGVuY2VfbmV1dHJvcGhpbF90YWJsZV9zdmEKCiMjIFRoZXJlIGFyZSBpbnN1ZmZpY2llbnQgc2FtcGxlcyAoMSkgaW4gdGhlICdOJyBjYXRlZ29yeS4KIyNwZXJzaXN0ZW5jZV9lb3Npbm9waGlsX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UocGVyc2lzdGVuY2VfZW9zaW5vcGhpbCwgZmlsdGVyID0gVFJVRSwKIyMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKIyMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCiMjcGVyc2lzdGVuY2VfZW9zaW5vcGhpbF9kZV9zdmEKIyNwZXJzaXN0ZW5jZV9lb3Npbm9waGlsX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKIyMgIHBlcnNpc3RlbmNlX2Vvc2lub3BoaWxfZGVfc3ZhLAojIyAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0RFX1BlcnNpc3RlbmNlL3BlcnNpc3RlbmNlX2Vvc2lub3BoaWxfZGVfc3ZhLXZ7dmVyfS54bHN4IikpCmBgYAoKIyBDb21wYXJpbmcgdmlzaXRzIHdpdGhvdXQgcmVnYXJkIHRvIGN1cmUvZmFpbAoKSW4gdGhlIGZvbGxvd2luZywgSSBhbSBob3BpbmcgdG8gbG93ZXIgdmFyaWFuY2UgYXNzb2NpYXRlZCB3aXRoCmZhY3RvcnMgb3RoZXIgdGhhbiB2aXNpdCB2aWEgc3ZhIGFuZCB0aGVyZWZvcmUgYmUgYWJsZSB0byBzZWUgd2hhdApnZW5lcyBhcmUgY2hhbmdpbmcgZm9yIGV2ZXJ5b25lIHdpdGggcmVzcGVjdCB0byB0aW1lLgoKVGhpcyBpcyB0aGUgb25lIGluc3RhbmNlIHdoZXJlIEkgdGhpbmsgaXQgd291bGQgYmUgcmVhbGx5IG5pY2UgdG8gaGF2ZQpiaW9wc3kgc2FtcGxlcyBmb3IgYWxsIHRocmVlIHZpc2l0czsgSSBwcmVzdW1lIHRoYXQgd2Ugd291bGQgaGF2ZSBhCnJlYWxseSBuaWNlIHNpZ25hbCBvZiBzdHVmZiBsaWtlIGtlcmF0aW4gYW5kIG90aGVyIHdvdW5kLWhlYWxpbmcKYXNzb2NpYXRlZCBnZW5lcy4KCiMjIEFsbCBjZWxsIHR5cGVzCgpgYGB7cn0KdF92aXNpdF9hbGxfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X3Zpc2l0LCBmaWx0ZXIgPSBUUlVFLCBtZXRob2RzID0gbWV0aG9kcywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiKQp0X3Zpc2l0X2FsbF9kZV9zdmEKdF92aXNpdF9hbGxfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfdmlzaXRfYWxsX2RlX3N2YSwga2VlcGVycyA9IHZpc2l0X2NvbnRyYXN0cywgc2NhbGVfcCA9IFRSVUUsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0RFX1Zpc2l0cy90X2FsbF92aXNpdF90YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdF92aXNpdF9hbGxfdGFibGVfc3ZhCnRfdmlzaXRfYWxsX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X3Zpc2l0X2FsbF90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0RFX1Zpc2l0cy90X2FsbF92aXNpdF9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCnRfdmlzaXRfYWxsX3NpZ19zdmEKYGBgCgojIyBNb25vY3l0ZSBzYW1wbGVzCgpgYGB7cn0KdF92aXNpdF9tb25vY3l0ZXMgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0X21vbm9jeXRlcywgZmFjdCA9ICJ2aXNpdG51bWJlciIpCgp0X3Zpc2l0X21vbm9jeXRlX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF92aXNpdF9tb25vY3l0ZXMsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRfdmlzaXRfbW9ub2N5dGVfZGVfc3ZhCnRfdmlzaXRfbW9ub2N5dGVfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfdmlzaXRfbW9ub2N5dGVfZGVfc3ZhLCBrZWVwZXJzID0gdmlzaXRfY29udHJhc3RzLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfVmlzaXRzL01vbm9jeXRlcy90X21vbm9jeXRlX3Zpc2l0X3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X3Zpc2l0X21vbm9jeXRlX3RhYmxlX3N2YQp0X3Zpc2l0X21vbm9jeXRlX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X3Zpc2l0X21vbm9jeXRlX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfVmlzaXRzL01vbm9jeXRlcy90X21vbm9jeXRlX3Zpc2l0X3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF92aXNpdF9tb25vY3l0ZV9zaWdfc3ZhCmBgYAoKIyMgTmV1dHJvcGhpbCBzYW1wbGVzCgpgYGB7cn0KdF92aXNpdF9uZXV0cm9waGlscyA8LSBzZXRfZXhwdF9jb25kaXRpb25zKHRfbmV1dHJvcGhpbHMsIGZhY3QgPSAidmlzaXRudW1iZXIiKQoKdF92aXNpdF9uZXV0cm9waGlsX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF92aXNpdF9uZXV0cm9waGlscywgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRfdmlzaXRfbmV1dHJvcGhpbF9kZV9zdmEKdF92aXNpdF9uZXV0cm9waGlsX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X3Zpc2l0X25ldXRyb3BoaWxfZGVfc3ZhLCBrZWVwZXJzID0gdmlzaXRfY29udHJhc3RzLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfVmlzaXRzL05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF92aXNpdF90YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdF92aXNpdF9uZXV0cm9waGlsX3RhYmxlX3N2YQp0X3Zpc2l0X25ldXRyb3BoaWxfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfdmlzaXRfbmV1dHJvcGhpbF90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0RFX1Zpc2l0cy9OZXV0cm9waGlscy90X25ldXRyb3BoaWxfdmlzaXRfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQp0X3Zpc2l0X25ldXRyb3BoaWxfc2lnX3N2YQpgYGAKCiMjIEVvc2lub3BoaWwgc2FtcGxlcwoKYGBge3J9CnRfdmlzaXRfZW9zaW5vcGhpbHMgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0X2Vvc2lub3BoaWxzLCBmYWN0PSJ2aXNpdG51bWJlciIpCgp0X3Zpc2l0X2Vvc2lub3BoaWxfZGUgPC0gYWxsX3BhaXJ3aXNlKHRfdmlzaXRfZW9zaW5vcGhpbHMsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdF92aXNpdF9lb3Npbm9waGlsX2RlCnRfdmlzaXRfZW9zaW5vcGhpbF90YWJsZSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X3Zpc2l0X2Vvc2lub3BoaWxfZGUsIGtlZXBlcnMgPSB2aXNpdF9jb250cmFzdHMsIHNjYWxlX3AgPSBUUlVFCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0RFX1Zpc2l0cy9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfdmlzaXRfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRfdmlzaXRfZW9zaW5vcGhpbF90YWJsZQp0X3Zpc2l0X2Vvc2lub3BoaWxfc2lnIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF92aXNpdF9lb3Npbm9waGlsX3RhYmxlLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9ERV9WaXNpdHMvRW9zaW5vcGhpbHMvdF9lb3Npbm9waGlsX3Zpc2l0X3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKIyMgTm8gc2lnbmlmaWNhbnQgZ2VuZXMgb2JzZXJ2ZWQuCmBgYAoKIyBFeHBsb3JlIFJPQwoKQWxlamFuZHJvIHNob3dlZCBzb21lIFJPQyBjdXJ2ZXMgZm9yIGVvc2lub3BoaWwgZGF0YSBzaG93aW5nCnNlbnNpdGl2aXR5IHZzLiBzcGVjaWZpY2l0eSBvZiBhIGNvdXBsZSBnZW5lcyB3aGljaCB3ZXJlIG9ic2VydmVkIGluCnYxIGVvc2lub3BoaWxzIHZzLiBhbGwtdGltZXMgZW9zaW5vcGhpbHMgYWNyb3NzIGN1cmUvZmFpbC4gIEkgYW0KY3VyaW91cyB0byBiZXR0ZXIgdW5kZXJzdGFuZCBob3cgdGhpcyB3YXMgZG9uZSBhbmQgd2hhdCB1dGlsaXR5IGl0Cm1pZ2h0IGhhdmUgaW4gb3RoZXIgY29udGV4dHMuCgpUbyB0aGF0IGVuZCwgSSB3YW50IHRvIHRyeSBzb21ldGhpbmcgc2ltaWxhciBteXNlbGYuIEluIG9yZGVyIHRvCnByb3Blcmx5IHBlcmZvcm0gdGhlIGFuYWx5c2lzIHdpdGggdGhlc2UgdmFyaW91cyB0b29scywgSSBuZWVkIHRvCnJlY29uZmlndXJlIHRoZSBkYXRhIGluIGEgcHJldHR5IHNwZWNpZmljIGZvcm1hdDoKCjEuICBTaW5nbGUgZGYgd2l0aCAxIHJvdyBwZXIgc2V0IG9mIG9ic2VydmF0aW9ucyAoc2FtcGxlIGluIHRoaXMgY2FzZQpJIHRoaW5rKQoyLiAgVGhlIG91dGNvbWUgY29sdW1uKHMpIG5lZWQgdG8gYmUgMSAob3IgbW9yZT8pIG1ldGFkYXRhIGZhY3RvcihzKQooY3VyZS9mYWlsIG9yIGEgcGFzdGUwIG9mIHJlbGV2YW50IHF1ZXJpZXMgKGVvX3YxX2N1cmUsCmVvX3YxMjNfY3VyZSwgZXRjKQozLiAgVGhlIHByZWRpY3RvciBjb2x1bW4ocykgYXJlIHRoZSBtZWFzdXJlbWVudHMgKHJwa20gb2YgMSBvciBtb3JlCmdlbmVzKSwgMSBjb2x1bW4gZWFjaCBnZW5lLgoKSWYgSSBpbnRlbmQgdG8gdXNlIHRoaXMgZm9yIG91ciB0eCBkYXRhLCBJIHdpbGwgbGlrZWx5IG5lZWQgYSB1dGlsaXR5CmZ1bmN0aW9uIHRvIGNyZWF0ZSB0aGUgcHJvcGVybHkgZm9ybWF0dGVkIGlucHV0IGRmLgoKRm9yIHRoZSBwdXJwb3NlcyBvZiBteSBwbGF5aW5nLCBJIHdpbGwgY2hvb3NlIHRocmVlIGdlbmVzIGZyb20gdGhlCmVvc2lub3BoaWwgQy9GIHRhYmxlLCBvbmUgd2hpY2ggaXMgc2lnbmlmaWNhbnQsIG9uZSB3aGljaCBpcyBub3QsIGFuZAphbiBhcmJpdHJhcnkuCgpUaGUgaW5wdXQgZ2VuZXMgd2lsbCB0aGVyZWZvcmUgYmUgY2hvc2VuIGZyb20gdGhlIGRhdGEgc3RydWN0dXJlOgp0X2NmX2Vvc2lub3BoaWxfdGFibGVfc3ZhOgoKRU5TRzAwMDAwMTk4MTc4LCBFTlNHMDAwMDAxNzkzNDQsIEVOU0cwMDAwMDE4MjYyOAoKYGBge3J9CmVvX3Jwa20gPC0gbm9ybWFsaXplX2V4cHQodHYxX2Vvc2lub3BoaWxzLCBjb252ZXJ0ID0gInJwa20iLCBjb2x1bW4gPSAiY2RzX2xlbmd0aCIpCmBgYAoKIyBBbiBleHRlcm5hbCBkYXRhc2V0CgpUaGlzIHBhcGVyIGlzIERPSToxMC4xMTI2L3NjaXRyYW5zbG1lZC5hYXg0MjA0CgpWYXJpYWJsZSBnZW5lIGV4cHJlc3Npb24gYW5kIHBhcmFzaXRlIGxvYWQgcHJlZGljdCB0cmVhdG1lbnQgb3V0Y29tZSBpbiBjdXRhbmVvdXMgbGVpc2htYW5pYXNpcy4KCk9uZSBxdWVyeSBmcm9tIE1hcmlhIEFkZWxhaWRhIGlzIHRvIHNlZSBob3cgdGhpcyBkYXRhIGZpdHMgd2l0aCBvdXJzLgpJIGhhdmUgcmVhZCB0aGlzIHBhcGVyIGEgY291cGxlIG9mIHRpbWVzIG5vdyBhbmQgSSBnZXQgY29uZnVzZWQgb24gYQpjb3VwbGUgb2YgcG9pbnRzIGV2ZXJ5IHRpbWUsIHdoaWNoIEkgd2lsbCBleHBsYWluIGluIGEgbW9tZW50LiAgVGhlCmV4cGVybWVudGFsIGRlc2lnbiBpcyBrZXkgdG8gbXkgY29uZnVzaW9uIGFuZCBrZXkgdG8gd2hhdCBJIHRoaW5rIGlzCmJlaW5nIG1pc3NlZCBpbiBvdXIgaW50ZXJwcmV0YXRpb24gb2YgdGhlIHJlc3VsdHM6CgoxLiAgVGhlIFBDQSBpcyBub3QgY3VyZSB2cy4gZmFpbCBidXQgaGVhbHRoeSBza2luIHZzLiBDTCBsZXNpb24uICBJdAogICAgc2hvdWxkIGJlIHNhaWQgdGhhdCB0aGUgdGV4dCBtYWtlcyB0aGlzIHBlcmZlY3RseSBjbGVhciwgYnV0IEkgY2FuCiAgICBuZXZlciBzZWVtIHRvIHJlbWVtYmVyIHRoYXQgd2hlbiBJIGdvIHRvIGxvb2sgYXQgdGhlIGRhdGE7CiAgICBwcmVzdW1hYmx5IGJlY2F1c2UgSSBhbSB0aGlua2luZyBwcmltYXJpbHkgYWJvdXQgY3VyZS9mYWlsLgoKIyMgT25seSB0aGUgU2NvdHQgZGF0YQoKYGBge3J9CmV4dGVybmFsX25vcm0gPC0gbm9ybWFsaXplX2V4cHQoZXh0ZXJuYWxfY2YsIGZpbHRlciA9IFRSVUUsIG5vcm0gPSAicXVhbnQiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbnZlcnQgPSAiY3BtIiwgdHJhbnNmb3JtID0gImxvZzIiKQpwbG90X3BjYShleHRlcm5hbF9ub3JtKQpleHRlcm5hbF9uYiA8LSBub3JtYWxpemVfZXhwdChleHRlcm5hbF9jZiwgZmlsdGVyID0gVFJVRSwgYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb252ZXJ0ID0gImNwbSIsIHRyYW5zZm9ybSA9ICJsb2cyIikKcGxvdF9wY2EoZXh0ZXJuYWxfbmIpCgpleHRlcm5hbF9kZSA8LSBhbGxfcGFpcndpc2UoZXh0ZXJuYWxfY2YsIGZpbHRlciA9IFRSVUUsIG1ldGhvZHMgPSBtZXRob2RzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgcGFyYWxsZWwgPSBwYXJhbGxlbCwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIikKZXh0ZXJuYWxfZGUKZXh0ZXJuYWxfdGFibGUgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgZXh0ZXJuYWxfZGUsIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gImV4Y2VsL3Njb3R0X3RhYmxlLnhsc3giKQpleHRlcm5hbF90YWJsZQpleHRlcm5hbF9zaWcgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyhleHRlcm5hbF90YWJsZSwgZXhjZWwgPSAiZXhjZWwvc2NvdHRfc2lnLnhsc3giKQpleHRlcm5hbF9zaWcKCmV4dGVybmFsX3RvcDEwMCA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKGV4dGVybmFsX3RhYmxlLCBuID0gMTAwKQpleHRlcm5hbF91cCA8LSBleHRlcm5hbF90b3AxMDBbWyJkZXNlcSJdXVtbInVwcyJdXVtbImZhaWx1cmVfdnNfY3VyZSJdXQpleHRlcm5hbF9kb3duIDwtIGV4dGVybmFsX3RvcDEwMFtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJmYWlsdXJlX3ZzX2N1cmUiXV0KYGBgCgojIyBBbiBleHBsaWNpdCBjb21wYXJpc29uIG9mIG1ldGhvZHMuCgpJIHRoaW5rIEkgYW0gZ2V0dGluZyBhIHNpZ25pZmljYW50bHkgZGlmZmVyZW50IHJlc3VsdCBmcm9tIFNjb3R0LCBzbyBJCmFtIGdvaW5nIHRvIGRvIGFuIGV4cGxpY2l0IHNpZGUtYnktc2lkZSBjb21wYXJpc29uIG9mIG91ciByZXN1bHRzIGF0CmVhY2ggc3RlcC4gIEluIG9yZGVyIHRvIGRvIHRoaXMsIEkgYW0gdXNpbmcgdGhlIGNhcHN1bGUgdGhleSBraW5kbHkKcHJvdmlkZWQgd2l0aCB0aGVpciBwdWJsaWNhdGlvbi4KCkkgYW0gY29weS9wYXN0aW5nIG1hdGVyaWFsIGZyb20gdGhlaXIgcHVibGljYXRpb24gd2l0aCBzb21lCm1vZGlmaWNhdGlvbiB3aGljaCBJIHdpbGwgbm90ZSBhcyBJIGdvLgoKSGVyZSBpcyB0aGVpciBibG9jayAnciBwYWNrYWdlcycKCipOb3RlL1Nwb2lsZXIgYWxlcnQqOiBJdCBhY3R1YWxseSB0dXJucyBvdXQgb3VyIHJlc3VsdHMgYXJlIGJhc2ljYWxseQpyZWxhdGl2ZWx5IHNpbWlsYXIsIEkganVzdCBkaWRuJ3QgdW5kZXJzdGFuZCB3aGF0IGNvbXBhcmlzb25zIGFyZQphY3R1YWxseSBpbiBwYXBlciB2cyB0aG9zZSBJIGhhdmUgcHJpbWFyeSBpbnRlcmVzdC4gIEluIGFkZGl0aW9uLCB3ZQpoYW5kbGVkIGdlbmUgSURzIGRpZmZlcmVudGx5IChnZW5lIGNhcmQgdnMuIEVuc2VtYmxJRCkgd2hpY2ggaGFzIGEKc3VycHJpc2luZ2x5IGJpZyBlZmZlY3QuCgpPaCwgSSBqdXN0IHJlYWxpemVkIHRoYXQgd2hlbiBJIGRpZCB0aGVzZSBhbmFseXNlcywgSSBkaWQgdGhlbSBpbiBhCmNvbXBsZXRlbHkgc2VwYXJhdGUgdHJlZSBhbmQgY29tcGFyZWQgdGhlIHJlc3VsdHMgcG9zdC1mYWN0by4gIFRoaXMKYXNzdW1wdGlvbiByZW1haW5zIGluIHRoaXMgZG9jdW1lbnQgYW5kIHRoZXJlZm9yZSBpcyB1bmxpa2VseSB0byB3b3JrCnByb3Blcmx5IGluIHRoZSBjb250YWluZXJpemVkIGVudmlyb25tZW50IEkgYW0gYXR0ZW1wdGluZyB0byBjcmVhdGUuCkdpdmVuIHRoYXQgdGhlIHByaW1hcnkgZ29hbCBvZiB0aGlzIHNlY3Rpb24gaXMgdG8gc2hvdyB0byBteXNlbGYgdGhhdApJIGNvbXBhcmVkIHRoZSB0d28gZGF0YXNldHMgYXMgdGhvcm91Z2hseSBhcyBJIGNvdWxkLCBwZXJoYXBzIEkgc2hvdWxkCmp1c3QgZGlzYWJsZSB0aGVtIGZvciB0aGUgY29udGFpbmVyIGFuZCBhbGxvdyB0aGUgcmVhZGVyIHRvIHBlcmZvcm0KdGhlIGV4ZXJjaXNlIGRlLW5vdm8uCgpgYGB7ciwgZXZhbD1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoZ2d0aGVtZXMpCmxpYnJhcnkocmVzaGFwZTIpCmxpYnJhcnkoZWRnZVIpCmxpYnJhcnkocGF0Y2h3b3JrKQpsaWJyYXJ5KHZlZ2FuKQpsaWJyYXJ5KERUKQpsaWJyYXJ5KHR4aW1wb3J0KQpsaWJyYXJ5KGdwbG90cykKbGlicmFyeShGaW5DYWwpCmxpYnJhcnkoZ2dyZXBlbCkKbGlicmFyeShndCkKbGlicmFyeShnZ0V4dHJhKQpsaWJyYXJ5KEVuc0RiLkhzYXBpZW5zLnY4NikKbGlicmFyeShzdHJpbmdyKQpsaWJyYXJ5KGNvd3Bsb3QpCmxpYnJhcnkoZ2dwdWJyKQpgYGAKCkkgaGF2ZSBhIHNlcGFyYXRlIHRyZWUgaW4gd2hpY2ggSSBjb3BpZWQgdGhlIGNhcHN1bGUgYW5kIGRhdGEuICBJCnBlcmZvcm1lZCBleGFjdGx5IHRoZWlyIHN0ZXBzIGthbGxpc3RvIHF1YW50IHN0ZXBzIHdpdGhpbiBpdCBhbmQgcHV0CnRoZSBvdXRwdXQgZGF0YSBpbnRvIHRoZSBzYW1lIHBsYWNlIHdpdGhpbiBpdC4gIEkgZGlkIGNoYW5nZSB0aGUKY29tbWFuZHMgc2xpZ2h0bHkgYmVjYXVzZSBJIGRvd25sb2FkZWQgdGhlIGZpbGVzIGZyb20gU1JBIGFuZCBzbyBkb24ndApoYXZlIHRoZW0gd2l0aCBuYW1lcyBsaWtlICdob3N0X0NMMDEnLCBidXQgaW5zdGVhZCAnUFJKTkEuLi4nLiAgQnV0CnRoZSBzYW1wbGVzIGFyZSBpbiB0aGUgc2FtZSBvcmRlciwgc28gSSBzZW50IHRoZSBvdXRwdXQgZmlsZXMgdG8gdGhlCnNhbWUgZmluYWwgZmlsZW5hbWVzLiAgSGVyZSBpcyBhbiBleGFtcGxlIGZyb20gdGhlIGZpcnN0IHNhbXBsZToKCmBgYHtiYXNoIGZpcnN0X3NhbXBsZSwgZXZhbD1GQUxTRX0KY2QgcHJlcHJvY2Vzc2luZwptb2R1bGUgYWRkIGthbGxpc3RvCmthbGxpc3RvIGluZGV4IC1pIEhvbW9fc2FwaWVucy5HUkNoMzguY2RuYS5hbGwuSW5kZXggSG9tb19zYXBpZW5zLkdSQ2gzOC5jZG5hLmFsbC5mYQojIE1hcCByZWFkcyB0byB0aGUgaW5kZXhlZCByZWZlcmVuY2UgdHJhbnNjcmlwdG9tZSBmb3IgSE9TVAojIGZpcnN0IHRoZSBoZWFsdGh5IHN1YmplY3RzIChIUykKZXhwb3J0IExFU1MgPSAnLS1idWZmZXJzIDAgLUInCmthbGxpc3RvIHF1YW50IC1pIEhvbW9fc2FwaWVucy5HUkNoMzguY2RuYS5hbGwuSW5kZXggLW8gaG9zdF9IUzAxIC10IDI0IC1iIDYwIFwKICAgICAgICAgLS1zaW5nbGUgLWwgMjUwIC1zIDMwIDwobGVzcyBTUlI4NjY4NzU1LyotdHJpbW1lZC5mYXN0cS54eikgMj5ob3N0X0hTMDEubG9nIDE+JjIgJgpgYGAKCiMjIEJsb2NrICdzYW1wbGVfaW5mbycKCkkgYW0gZ29pbmcgdG8gY2hhbmdlIHRoZSBwYXRoIHZlcnkgc2xpZ2h0bHkgaW4gdGhlIGZvbGxvd2luZyBibG9jawpzaW1wbHkgYmVjYXVzZSBJIHB1dCB0aGUgY2Fwc3VsZSBpbiBhIHNlcGFyYXRlIGRpcmVjdG9yeSBhbmQgZG8gbm90CndhbnQgdG8gY29weSBpdCBoZXJlLiAgT3RoZXJ3aXNlIGl0IGlzIHVubW9kaWZpZWQuICBBbHNvLCB0aGUgZnVuY3Rpb24KZ3Q6OnRhYl9oZWFkZXIoKSBhbm5veXMgdGhlIGNyYXAgb3V0IG9mIG1lLgoKYGBge3IsIGV2YWw9RkFMU0V9CmltcG9ydCA8LSByZWFkX3RzdigiLi4vc2NvdHRfMjAxOS9jYXBzdWxlLTY1MzQwMTYvZGF0YS9zdHVkeWRlc2lnbi50eHQiKQppbXBvcnQgJT4lIGRwbHlyOjpmaWx0ZXIoZGlzZWFzZSA9PSAiY3V0YW5lb3VzIikgJT4lCiAgZHBseXI6OnNlbGVjdCgtMikgJT4lICBndCgpICU+JQogIHRhYl9oZWFkZXIodGl0bGUgPSBtZCgiQ2xpbmljYWwgbWV0YWRhdGEgZnJvbSBwYXRpZW50cyB3aXRoIGN1dGFuZW91cyBsZWlzaG1hbmlhc2lzIChDTCkiKSwKICAgICAgICAgICAgIHN1YnRpdGxlID0gbWQoImAobj0yMSlgIikpICU+JSAgY29sc19hbGlnbihhbGlnbiA9ICJjZW50ZXIiLCBjb2x1bW5zID0gVFJVRSkKdGFyZ2V0cy5sZXNpb24gPC0gaW1wb3J0CnRhcmdldHMub25seXBhdGllbnRzIDwtIHRhcmdldHMubGVzaW9uWzg6MjgsXSAjIG9ubHkgQ0wgbGVzaW9ucyAobj0yMSkKCiMgTWFraW5nIGZhY3RvcnMgdGhhdCB3aWxsIGJlIHVzZWQgZm9yIHBhaXJ3aXNlIGNvbXBhcmlzb25zOgojIEhTIHZzLiBDTCBsZXNpb25zIGFzIGEgZmFjdG9yOgpkaXNlYXNlLmxlc2lvbiA8LSBmYWN0b3IodGFyZ2V0cy5sZXNpb24kZGlzZWFzZSkKIyBDdXJlIHZzLiBGYWlsdXJlIGxlc2lvbnMgYXMgYSBmYWN0b3I6CnRyZWF0bWVudC5sZXNpb24gPC0gZmFjdG9yKHRhcmdldHMub25seXBhdGllbnRzJHRyZWF0bWVudF9vdXRjb21lKQpgYGAKCiMjIEltcG9ydGluZyB0aGUgZGF0YSBhbmQgYW5ub3RhdGlvbnMKClRoZXkgZGlkIHVzZSBhIHNsaWdodGx5IGRpZmZlcmVudCBhbm5vdGF0aW9uIHNldCwgRW5zZW1ibCByZXZpc2lvbiA4Ni4KT25jZSBhZ2FpbiBJIGFtIG1vZGlmeWluZyB0aGUgcGF0aHMgc2xpZ2h0bHkgdG8gcmVmbGVjdCB3aGVyZSBJIHB1dAp0aGUgY2Fwc3VsZS4KCmBgYHtyLCBldmFsPUZBTFNFfQojIGNhcHR1cmluZyBFbnNlbWJsIHRyYW5zY3JpcHQgSURzICh0eCkgYW5kIGdlbmUgc3ltYm9scyAoImdlbmVfbmFtZSIpIGZyb20KIyBFbnNEYi5Ic2FwaWVucy52ODYgYW5ub3RhdGlvbiBwYWNrYWdlClR4IDwtIGFzLmRhdGEuZnJhbWUodHJhbnNjcmlwdHMoRW5zRGIuSHNhcGllbnMudjg2LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbHVtbnM9YyhsaXN0Q29sdW1ucyhFbnNEYi5Ic2FwaWVucy52ODYsICJ0eCIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiZ2VuZV9uYW1lIikpKQoKVHggPC0gZHBseXI6OnJlbmFtZShUeCwgdGFyZ2V0X2lkID0gdHhfaWQpCnJvdy5uYW1lcyhUeCkgPC0gTlVMTApUeCA8LSBUeFssYyg2LDEyKV0KCiMgZ2V0dGluZyBmaWxlIHBhdGhzIGZvciBLYWxsaXN0byBvdXRwdXRzCnBhdGhzLmFsbCA8LSBmaWxlLnBhdGgoIi4uL3Njb3R0XzIwMTkvY2Fwc3VsZS02NTM0MDE2L2RhdGEvcmVhZE1hcHBpbmcvaHVtYW4iLCB0YXJnZXRzLmxlc2lvbiRzYW1wbGUsICJhYnVuZGFuY2UuaDUiKQpwYXRocy5wYXRpZW50cyA8LSBmaWxlLnBhdGgoIi4uL3Njb3R0XzIwMTkvY2Fwc3VsZS02NTM0MDE2L2RhdGEvcmVhZE1hcHBpbmcvaHVtYW4iLCB0YXJnZXRzLm9ubHlwYXRpZW50cyRzYW1wbGUsICJhYnVuZGFuY2UuaDUiKQoKIyBpbXBvcnRpbmcgLmg1IEthbGxpc3RvIGRhdGEgYW5kIGNvbGxhcHNpbmcgdHJhbnNjcmlwdC1sZXZlbCBkYXRhIHRvIGdlbmVzClR4aS5sZXNpb24uY29kaW5nIDwtIHR4aW1wb3J0KHBhdGhzLmFsbCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHlwZSA9ICJrYWxsaXN0byIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHR4MmdlbmUgPSBUeCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHhPdXQgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWdub3JlVHhWZXJzaW9uID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY291bnRzRnJvbUFidW5kYW5jZSA9ICJsZW5ndGhTY2FsZWRUUE0iKQoKIyBpbXBvcnRpbmcgYWdhaW5nLCBidXQgdGhpcyB0aW1lIGp1c3QgdGhlIENMIHBhdGllbnRzClR4aS5sZXNpb24uY29kaW5nLm9ubHlwYXRpZW50cyA8LSB0eGltcG9ydChwYXRocy5wYXRpZW50cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHR5cGUgPSAia2FsbGlzdG8iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHgyZ2VuZSA9IFR4LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHhPdXQgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlnbm9yZVR4VmVyc2lvbiA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb3VudHNGcm9tQWJ1bmRhbmNlID0gImxlbmd0aFNjYWxlZFRQTSIpCmBgYAoKIyMgRmlsdGVyaW5nIGFuZCBub3JtYWxpemF0aW9uCgpUaGUgYmxvY2sgJ3Zpc3VhbGl6YXRpb25EYXRhc2V0cycgZm9sbG93cyB1bmNoYW5nZWQuICBJbiB0aGUgbmV4dApibG9jayBJIHdpbGwgYWRkIGFub3RoZXIgcGxvdCBvciBwZXJoYXBzIDIKCmBgYHtyLCBldmFsPUZBTFNFfQojIEZpcnN0IG1ha2UgYSBER0VMaXN0IGZyb20gdGhlIGNvdW50czoKVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdCA8LSBER0VMaXN0KFR4aS5sZXNpb24uY29kaW5nJGNvdW50cykKY29sbmFtZXMoVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdCRjb3VudHMpIDwtIHRhcmdldHMubGVzaW9uJHNhbXBsZQpjb2xuYW1lcyhUeGkubGVzaW9uLmNvZGluZyRjb3VudHMpIDwtIHRhcmdldHMubGVzaW9uJHNhbXBsZQoKVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5PUCA8LSBER0VMaXN0KFR4aS5sZXNpb24uY29kaW5nLm9ubHlwYXRpZW50cyRjb3VudHMpCmNvbG5hbWVzKFR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QuT1ApIDwtIHRhcmdldHMub25seXBhdGllbnRzJHNhbXBsZQoKIyBDb252ZXJ0IHRvIGNvdW50cyBwZXIgbWlsbGlvbjoKVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5jcG0gPC0gZWRnZVI6OmNwbShUeGkubGVzaW9uLmNvZGluZy5ER0VMaXN0LCBsb2cgPSBUUlVFKQpUeGkubGVzaW9uLmNvZGluZy5ER0VMaXN0Lk9QLmNwbSA8LSBlZGdlUjo6Y3BtKFR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QuT1AsIGxvZyA9IFRSVUUpCgprZWVwZXJzLmNvZGluZyA8LSByb3dTdW1zKFR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QuY3BtPjEpPj03CmtlZXBlcnMuY29kaW5nLk9QIDwtIHJvd1N1bXMoVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5PUC5jcG0+MSk+PTcKClR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QuZmlsdGVyZWQgPC0gVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdFtrZWVwZXJzLmNvZGluZyxdClR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QuT1AuZmlsdGVyZWQgPC0gVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5PUFtrZWVwZXJzLmNvZGluZy5PUCxdCgojIGNvbnZlcnQgYmFjayB0byBjcG06ClR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QuTG9nQ1BNLmZpbHRlcmVkIDwtIGVkZ2VSOjpjcG0oVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5maWx0ZXJlZCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsb2c9VFJVRSkKVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5Mb2dDUE0uT1AuZmlsdGVyZWQgPC0gZWRnZVI6OmNwbShUeGkubGVzaW9uLmNvZGluZy5ER0VMaXN0Lk9QLmZpbHRlcmVkLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxvZz1UUlVFKQoKIyBOb3JtYWxpemluZyBkYXRhOgpjYWxjTm9ybTEgPC0gY2FsY05vcm1GYWN0b3JzKFR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QuZmlsdGVyZWQsIG1ldGhvZCA9ICJUTU0iKQpjYWxjTm9ybTIgPC0gY2FsY05vcm1GYWN0b3JzKFR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QuT1AuZmlsdGVyZWQsIG1ldGhvZCA9ICJUTU0iKQoKVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5Mb2dDUE0uZmlsdGVyZWQubm9ybSA8LSBlZGdlUjo6Y3BtKGNhbGNOb3JtMSwgbG9nPVRSVUUpCmNvbG5hbWVzKFR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QuTG9nQ1BNLmZpbHRlcmVkLm5vcm0pIDwtIHRhcmdldHMubGVzaW9uJHNhbXBsZQpUeGkubGVzaW9uLmNvZGluZy5ER0VMaXN0Lk9QLkxvZ0NQTS5maWx0ZXJlZC5ub3JtIDwtIGVkZ2VSOjpjcG0oY2FsY05vcm0yLCBsb2c9VFJVRSkKY29sbmFtZXMoVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5PUC5Mb2dDUE0uZmlsdGVyZWQubm9ybSkgPC0gdGFyZ2V0cy5vbmx5cGF0aWVudHMkc2FtcGxlCiMgUmF3IGRhdGFzZXQ6ClYxIDwtIGFzLmRhdGEuZnJhbWUoVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5jcG0pCmNvbG5hbWVzKFYxKSA8LSB0YXJnZXRzLmxlc2lvbiRzYW1wbGUKVjEgPC0gbWVsdChWMSkKY29sbmFtZXMoVjEpIDwtIGMoInNhbXBsZSIsImV4cHJlc3Npb24iKQoKIyBGaWx0ZXJlZCBkYXRhc2V0OgpWMS4xIDwtIGFzLmRhdGEuZnJhbWUoVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5Mb2dDUE0uZmlsdGVyZWQpCmNvbG5hbWVzKFYxLjEpIDwtIHRhcmdldHMubGVzaW9uJHNhbXBsZQpWMS4xIDwtIG1lbHQoVjEuMSkKY29sbmFtZXMoVjEuMSkgPC0gYygic2FtcGxlIiwiZXhwcmVzc2lvbiIpCgojIEZpbHRlcmVkLW5vcm1hbGl6ZWQgZGF0YXNldDoKVjEuMS4xIDwtIGFzLmRhdGEuZnJhbWUoVHhpLmxlc2lvbi5jb2RpbmcuREdFTGlzdC5Mb2dDUE0uZmlsdGVyZWQubm9ybSkKY29sbmFtZXMoVjEuMS4xKSA8LSB0YXJnZXRzLmxlc2lvbiRzYW1wbGUKVjEuMS4xIDwtIG1lbHQoVjEuMS4xKQpjb2xuYW1lcyhWMS4xLjEpIDwtIGMoInNhbXBsZSIsImV4cHJlc3Npb24iKQoKIyBwbG90dGluZzoKZ2dwbG90KFYxLCBhZXMoeD1zYW1wbGUsIHk9ZXhwcmVzc2lvbiwgZmlsbD1zYW1wbGUpKSArCiAgZ2VvbV92aW9saW4odHJpbSA9IFRSVUUsIHNob3cubGVnZW5kID0gVFJVRSkgKwogIHN0YXRfc3VtbWFyeShmdW4ueSA9ICJtZWRpYW4iLCBnZW9tID0gInBvaW50Iiwgc2hhcGUgPSA5NSwgc2l6ZSA9IDEwLCBjb2xvciA9ICJibGFjayIpICsKICB0aGVtZV9idygpICsKICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIsIGF4aXMudGl0bGU9ZWxlbWVudF90ZXh0KHNpemU9NyksCiAgICAgICAgYXhpcy50aXRsZS54PWVsZW1lbnRfYmxhbmsoKSwgYXhpcy50ZXh0PWVsZW1lbnRfdGV4dChzaXplPTUpLAogICAgICAgIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gOTAsIGhqdXN0ID0gMSksCiAgICAgICAgcGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChzaXplID0gNykpICsKICBnZ3RpdGxlKCJSYXcgZGF0YXNldCIpICsKICBnZ3Bsb3QoVjEuMSwgYWVzKHg9c2FtcGxlLCB5PWV4cHJlc3Npb24sIGZpbGw9c2FtcGxlKSkgKwogIGdlb21fdmlvbGluKHRyaW0gPSBUUlVFLCBzaG93LmxlZ2VuZCA9IFRSVUUpICsKICBzdGF0X3N1bW1hcnkoZnVuLnkgPSAibWVkaWFuIiwgZ2VvbSA9ICJwb2ludCIsIHNoYXBlID0gOTUsIHNpemUgPSAxMCwgY29sb3IgPSAiYmxhY2siKSArCiAgdGhlbWVfYncoKSArCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiLCBheGlzLnRpdGxlPWVsZW1lbnRfdGV4dChzaXplPTcpLAogICAgICAgIGF4aXMudGl0bGUueD1lbGVtZW50X2JsYW5rKCksIGF4aXMudGV4dD1lbGVtZW50X3RleHQoc2l6ZT01KSwKICAgICAgICBheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDkwLCBoanVzdCA9IDEpLAogICAgICAgIHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDcpKSArCiAgZ2d0aXRsZSgiRmlsdGVyZWQgZGF0YXNldCIpICsKICBnZ3Bsb3QoVjEuMS4xLCBhZXMoeD1zYW1wbGUsIHk9ZXhwcmVzc2lvbiwgZmlsbD1zYW1wbGUpKSArCiAgZ2VvbV92aW9saW4odHJpbSA9IFRSVUUsIHNob3cubGVnZW5kID0gVFJVRSkgKwogIHN0YXRfc3VtbWFyeShmdW4ueSA9ICJtZWRpYW4iLCBnZW9tID0gInBvaW50Iiwgc2hhcGUgPSA5NSwgc2l6ZSA9IDEwLCBjb2xvciA9ICJibGFjayIpICsKICB0aGVtZV9idygpICsKICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIsIGF4aXMudGl0bGU9ZWxlbWVudF90ZXh0KHNpemU9NyksCiAgICAgICAgYXhpcy50aXRsZS54PWVsZW1lbnRfYmxhbmsoKSwgYXhpcy50ZXh0PWVsZW1lbnRfdGV4dChzaXplPTUpLAogICAgICAgIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gOTAsIGhqdXN0ID0gMSksCiAgICAgICAgcGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChzaXplID0gNykpICsKICBnZ3RpdGxlKCJGaWx0ZXJlZCBhbmQgbm9ybWFsaXplZCBkYXRhc2V0IikKYGBgCgojIyBUaGUgdW5maWx0ZXJlZCBkYXRhCgpUaGUgZm9sbG93aW5nIGJsb2NrIGluIHRoZWlyIGRhdGFzZXQgcmVjcmVhdGVkIHRoZSBtYXRyaXggd2l0aG91dApmaWx0ZXJpbmcgYW5kIHdpbGwgdXNlIHRoYXQgZm9yIGRpZmZlcmVudGlhbCBleHByZXNzaW9uLiAgSXQgaXMgYQpsaXR0bGUgaGFyZCB0byBmb2xsb3cgZm9yIG1lIGJlY2F1c2UgdGhleSBzdWJzZXQgYmFzZWQgb24gdGhlIHNhbXBsZQpudW1iZXJzICg4IHRvIDI4LCB3aGljaCBpZiBJIGFtIG5vdCBtaXN0YWtlbiBqdXN0IGRyb3BzIHRoZSBoZWFsdGh5CnNhbXBsZXMpLgoKYGBge3IsIGV2YWw9RkFMU0V9CkRhdGFOb3RGaWx0ZXJlZF9Ob3JtX09QIDwtIGNhbGNOb3JtRmFjdG9ycyhUeGkubGVzaW9uLmNvZGluZy5ER0VMaXN0Wyw4OjI4XSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJUTU0iKQpEYXRhTm90RmlsdGVyZWRfTm9ybV9sb2cyQ1BNX09QIDwtIGVkZ2VSOjpjcG0oRGF0YU5vdEZpbHRlcmVkX05vcm1fT1AsIGxvZz1UUlVFKQpjb2xuYW1lcyhEYXRhTm90RmlsdGVyZWRfTm9ybV9sb2cyQ1BNX09QKSA8LSB0YXJnZXRzLm9ubHlwYXRpZW50cyRzYW1wbGUKQ1BNX25vcm1EYXRhX25vdGZpbHRlcmVkX09QIDwtIDJeKERhdGFOb3RGaWx0ZXJlZF9Ob3JtX2xvZzJDUE1fT1ApCiN1bmNvbW1lbnQgdGhlIG5leHQgbGluZSB0byBwcm9kdWNlIHJhdyBkYXRhIHRoYXQgd2FzIHVwbG9hZGVkIHRvIHRoZSBHZW5lIEV4cHJlc3Npb24gT21uaWJ1cyAoR0VPKSBmb3IgcHVibGljYXRpb24uCiN3cml0ZS50YWJsZShUeGkubGVzaW9uLmNvZGluZyRjb3VudHMsIGZpbGUgPSAiQW1vcmltX0dFT19yYXcudHh0Iiwgc2VwID0gIlx0IiwgcXVvdGUgPSBGQUxTRSkKCiMgSW5jbHVkaW5nIGFsbCB0aGUgaW5kaXZpZHVhbHMgKEhTIGFuZCBDTCBwYXRpZW50cykgZm9yIHB1YmxpYyBkb21haW4gc3VibWlzc2lvbjoKRGF0YU5vdEZpbHRlcmVkX05vcm0gPC0gY2FsY05vcm1GYWN0b3JzKFR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QsIG1ldGhvZCA9ICJUTU0iKQpEYXRhTm90RmlsdGVyZWRfTm9ybV9sb2cyQ1BNIDwtIGVkZ2VSOjpjcG0oRGF0YU5vdEZpbHRlcmVkX05vcm0sIGxvZz1UUlVFKQpjb2xuYW1lcyhEYXRhTm90RmlsdGVyZWRfTm9ybV9sb2cyQ1BNKSA8LSB0YXJnZXRzLmxlc2lvbiRzYW1wbGUKQ1BNX25vcm1EYXRhX25vdGZpbHRlcmVkIDwtIDJeKERhdGFOb3RGaWx0ZXJlZF9Ob3JtX2xvZzJDUE0pCiN1bmNvbW1lbnQgdGhlIG5leHQgbGluZSB0byBwcm9kdWNlIHRoZSBub3JtYWxpemVkIGRhdGEgZmlsZSB0aGF0IHdhcyB1cGxvYWRlZCB0byB0aGUgR2VuZSBFeHByZXNzaW9uIE9tbmlidXMgKEdFTykgZm9yIHB1YmxpY2F0aW9uLgojd3JpdGUudGFibGUoRGF0YU5vdEZpbHRlcmVkX05vcm1fbG9nMkNQTSwgIkFtb3JpbV9HRU9fbm9ybWFsaXplZC50eHQiLCBzZXAgPSAiXHQiLCBxdW90ZSA9IEZBTFNFKQpgYGAKCiMjIFRoZSBzY290dCBleHBsb3JhdG9yeSBhbmFseXNpcwoKVGhlIGZvbGxvd2luZyBibG9jayBnZW5lcmF0ZWQgYSBjb3VwbGUgb2YgdGhlIGZpZ3VyZXMgaW4gdGhlIHBhcGVyIGFuZApjb21wcmlzZSBhIHByZXR0eSBzdHJhaWdodGZvcndhcmQgUENBLiAgSSBhbSBnb2luZyB0byBtYWtlIGEgZm9sbG93aW5nCmJsb2NrIGNvbnRhaW5pbmcgdGhlIHNhbWUgaW1hZ2Ugd2l0aCB0aGUgY3VyZS9mYWlsIHZpc3VhbGl6YXRpb24gdXNpbmcKdGhlIHNhbWUgbWV0aG9kL2RhdGEuCgpgYGB7ciwgZXZhbD1GQUxTRX0KcGNhLnJlcyA8LSBwcmNvbXAodChUeGkubGVzaW9uLmNvZGluZy5ER0VMaXN0LkxvZ0NQTS5maWx0ZXJlZC5ub3JtKSwgc2NhbGUuPUYsIHJldHg9VCkKcGMudmFyIDwtIHBjYS5yZXMkc2Rldl4yCnBjLnBlciA8LSByb3VuZChwYy52YXIvc3VtKHBjLnZhcikqMTAwLCAxKQpkYXRhLmZyYW1lIDwtIGFzLmRhdGEuZnJhbWUocGNhLnJlcyR4KQoKIyBDYWxjdWxhdGUgZGlzdGFuY2UgYmV0d2VlbiBzYW1wbGVzIGJ5IHBlcm1hbm92YToKYWxsc2FtcGxlcy5kaXN0IDwtIHZlZ2Rpc3QodCgyXlR4aS5sZXNpb24uY29kaW5nLkRHRUxpc3QuTG9nQ1BNLmZpbHRlcmVkLm5vcm0pLAogICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2QgPSAiYnJheSIpCgp2ZWdhbiA8LSBhZG9uaXMyKGFsbHNhbXBsZXMuZGlzdH50YXJnZXRzLmxlc2lvbiRkaXNlYXNlLAogICAgICAgICAgICAgICAgIGRhdGE9dGFyZ2V0cy5sZXNpb24sCiAgICAgICAgICAgICAgICAgcGVybXV0YXRpb25zID0gOTk5LCBtZXRob2Q9ImJyYXkiKQoKdGFyZ2V0cy5sZXNpb24kZGlzZWFzZQpnZ3Bsb3QoZGF0YS5mcmFtZSwgYWVzKHg9UEMxLCB5PVBDMiwgY29sb3I9ZmFjdG9yKHRhcmdldHMubGVzaW9uJGRpc2Vhc2UpKSkgKwogIGdlb21fcG9pbnQoc2l6ZT01LCBzaGFwZT0yMCkgKwogIHRoZW1lX2NhbGMoKSArCiAgdGhlbWUocGFuZWwuZ3JpZC5tYWpvciA9IGVsZW1lbnRfYmxhbmsoKSwgcGFuZWwuZ3JpZC5taW5vciA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTUsIHZqdXN0ID0gMC41KSwKICAgICAgICBheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTUpLCBheGlzLnRpdGxlID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNSksCiAgICAgICAgbGVnZW5kLnBvc2l0aW9uPSJub25lIikgKwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjKCIjMDczRjgwIiwiI0VCNTEyQyIpKSArCiAgYW5ub3RhdGUoInRleHQiLCB4PS01MCwgeT04MCwgbGFiZWw9cGFzdGUoIlBlcm1hbm92YSBQcig+RikgPSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmVnYW5bMSw1XSksIHNpemU9MywgZm9udGZhY2U9ImJvbGQiKSArCiAgeGxhYihwYXN0ZSgiUEMxIC0iLHBjLnBlclsxXSwiJSIpKSArCiAgeWxhYihwYXN0ZSgiUEMyIC0iLHBjLnBlclsyXSwiJSIpKSArCiAgeGxpbSgtMjAwLDExMCkKYGBgCgojIyMgTXkgbW9zdCBzaW1pbGFyIHBjYQoKSSBqdXN0IHJlYWxpemVkIHRoYXQgc29tZXdoZXJlIGFsb25nIHRoZSB3YXkgaW4gY3JlYXRpbmcgdGhpcwpjb250YWluZXIsIEkgbWVzc2VkIHVwIHRoaXMgYW5hbHlzaXMgcHJldHR5IGJhZGx5OgoKMS4gIEkgZHJvcHBlZCB0aGUgNyBjb250cm9sIHNhbXBsZXMuCjIuICBJIGFtIGNvbXBhcmluZyBjdXJlL2ZhaWwgYnV0IHRoZXNlIGFuYWx5c2VzIGFyZSBhbGwKICAgIGNvbnRyb2wvY3V0YW5lb3VzLgoKV2hlbiBJIG9yaWdpbmFsbHkgZGlkIHRoaXMgb24gbXkgd29ya3N0YXRpb24gSSBoYWQgYW4gYWN0dWFsIDE6MQpjb21wYXJpc29uIGFuZCBzYXcgdGhhdCBvdXIgcmVzdWx0cyB3ZXJlIHF1aXRlIHNpbWlsYXIuICBJIG5lZWQgdG8KYnJpbmcgdGhhdCBiYWNrIGludG8gdGhpcyBpbiBvcmRlciB0byBzaG93IHRoYXQgbmVpdGhlciB3ZSBub3IgdGhleQphcmUgY3JhenkgcGVvcGxlLgoKRWl0aGVyIHdheSwgSSB0aGluayB0aGUgbWFpbiB0YWtlYXdheSBpcyB0aGF0IHRoZWlyIGRhdGFzZXQgZG9lcyBub3QKc3BlbmQgbXVjaCB0aW1lIGxvb2tpbmcgYXQgY3VyZS9mYWlsIGJ1dCBpbnN0ZWFkIGNvbnRyb2wvaW5mZWN0ZWQgZm9yCmEgcmVhc29uLgoKTm90ZSwgdGhlIGZ1biBhc3BlY3RzIG9mIHRoZSBleHBlcmltZW50ICh0aW1lIHRvIGN1cmUsIHNpemUgb2YgbGVzaW9uLApldGMpIGFyZSBub3QgYW5ub3RhdGVkIGluIHRoZSBtZXRhZGF0YSBwcm92aWRlZCBieSBTUkEsIGJ1dCBpbnN0ZWFkCm1heSBiZSBmb3VuZCBpbiB0aGUgY2Fwc3VsZSBraW5kbHkgcHJvdmlkZWQgYnkgdGhlIGxhYi4gIEFzIGEgcmVzdWx0LApJIGNvcGllZCB0aGF0IGZpbGUgaW50byB0aGUgc2FtcGxlX3NoZWV0cy8gZGlyZWN0b3J5IGFuZCBoYXZlIGFkZGVkIGl0CnRvIHRoZSBleHByZXNzaW9uc2V0LiAgVGhlcmUgaXMgYW4gaW1wb3J0YW50IGNhdmVhdCwgdGhvdWdoOiBJIGRpZCBub3QKaW5jbHVkZSB0aGUgbm9uLWRpc2Vhc2VkIHNhbXBsZXMgZm9yIHRoaXMgY29tcGFyaXNvbjsgYXMgYSByZXN1bHQgdGhlCmRpc2Vhc2UgbWV0YWRhdGEgZmFjdG9yIGlzIGJvcmluZyAoZS5nLiBpdCBpcyBvbmx5IGN1dGFuZW91cykuCgpgYGB7cn0KZXh0ZXJuYWxfY2ZbWyJhY2Nlc3Npb24iXV0gPC0gcERhdGEoZXh0ZXJuYWxfY2YpW1sic2FtcGxlIl1dCmRpc2Vhc2VfZmFjdG9yIDwtIHBEYXRhKGV4dGVybmFsX2NmKVtbImRpc2Vhc2UiXV0KdGFibGUoZGlzZWFzZV9mYWN0b3IpCmV4dGVybmFsX2Rpc2Vhc2UgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyhleHRlcm5hbF9jZiwgZmFjdCA9IGRpc2Vhc2VfZmFjdG9yKQoKZXh0ZXJuYWxfbDJjcG0gPC0gbm9ybWFsaXplX2V4cHQoZXh0ZXJuYWxfY2YsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29udmVydCA9ICJjcG0iLCB0cmFuc2Zvcm0gPSAibG9nMiIpCnBsb3RfcGNhKGV4dGVybmFsX2wyY3BtLCBwbG90X2xhYmVscyA9ICJyZXBlbCIpCmBgYAoKVXNlIHRoZSBmb2xsb3dpbmcgYmxvY2sgaWYgeW91IHdpc2ggdG8gYnJpbmcgdG9nZXRoZXIgU1JBLWRvd25sb2FkZWQKZGF0YSB3aXRoIHRoZSBleHBlcmltZW50YWwgZGVzaWduIGZyb20gdGhlIFNjb3R0IHBhcGVyLiAgSXQgcmVxdWlyZXMKcnVubmluZyB0aGUgYmxvY2tzIGFib3ZlIGluIHdoaWNoIEkgbG9hZGVkIHRoZSBjYXBzdWxlLWRlcml2ZWQKbWV0YWRhdGEuCgpgYGB7ciwgZXZhbD1GQUxTRX0KdGVzdCA8LSBwRGF0YShleHRlcm5hbF9jZikKdGVzdF9pbXBvcnQgPC0gYXMuZGF0YS5mcmFtZShpbXBvcnQpCnRlc3RfaW1wb3J0W1siYWNjZXNzaW9uIl1dIDwtIHBEYXRhKGV4dGVybmFsX2NmW1siYWNjZXNzaW9uIl1dKQp0ZXN0X21lcmdlZCA8LSBtZXJnZSh0ZXN0LCBpbXBvcnQsIGJ5ID0gImFjY2Vzc2lvbiIpCmBgYAoKVGhpcyBpcyByZWFsIGNvbXBhcmlzb24gcG9pbnQgdG8gdGhlaXIgY3VyZS9mYWlsIGFuYWx5c2lzLgoKIyMgQ3VyZS9GYWlsIFBDQSB1c2luZyB0aGUgc2FtZSBwcmNvbXAgcmVzdWx0CgpJIGFtIGp1c3QgY29weS9wYXN0aW5nIHRoZWlyIGNvZGUgYWdhaW4sIGJ1dCBjaGFuZ2luZyB0aGUgY29sb3IgZmFjdG9yCnNvIHRoYXQgY3VyZSBpcyBwdXJwbGUsIGZhaWx1cmUgaXMgcmVkLCBhbmQgbmEodW5pbmZlY3RlZCkgaXMgYmxhY2suCgpUaGUgZm9sbG93aW5nIHBsb3Qgc2hvdWxkIGJlIHRoZSBmaXJzdCBkaXJlY3QgY29tcGFyaXNvbiBwb2ludCBiZXR3ZWVuCnRoZSB0d28gYW5hbHlzaXMgcGlwZWxpbmVzLiAgVGh1cywgaWYgeW91IGxvb2sgYmFjayBhIGZldyBibG9jayBhdCBteQppbnZvY2F0aW9uIG9mIHBsb3RfcGNhKGV4dGVybmFsX25vcm0pLCB5b3Ugd2lsbCBzZWUgYSBncmVlbi9vcmFuZ2UKcGxvdCB3aGljaCBpcyBmdW5jdGlvbmFsbHkgaWRlbnRpY2FsIGlmIHlvdSBub3RlOgoKMS4gIFRoZSB4IGFuZCB5IGF4ZXMgYXJlIGZsaXBwZWQsIHdoaWNoIG9rIHdoYXRldmVyIGl0IGlzIFBDQS4KMi4gIEkgZXhjbHVkZWQgdGhlIGhlYWx0aHkgc2FtcGxlcy4KMy4gIEkgZHJvcHBlZCB0byBnZW5lIGxldmVsIGFuZCB1c2VkIGhpc2F0LgoKV2l0aCB0aG9zZSBjYXZlYXRzIGluIG1pbmQsIGl0IGlzIHRyaXZpYWwgdG8gZmluZCB0aGUgc2FtZQpyZWxhdGlvbnNoaXBlcyBpbiB0aGUgc2FtcGxlcy4gIEUuZy4gdGhlIGJvdHRvbSByZWQvcHVycGxlIGluZGl2aWR1YWwKc2FtcGxlcyBhcmUgaW4gdGhlIHNhbWUgcmVsYXRpdmUgcG9zaXRpb24gYXMgbXkgdG9wIG9yYW5nZS9ncmVlbiBwYWlyLgp0aGUgc2FtZSA0IHNhbXBsZXMgYXJlIHJlbGF0aXZlIHgtYXhpcyBvdXRsaWVycyAobXkgcmlnaHQgZ3JlZW4sIHRoZWlyCmxlZnQgcHVycGxlKS4gIFRoZSBsYXN0IDYgc2FtcGxlcyAobXkgb3JhbmdlLCB0aGVpciByZWQpIGFyZSBhbGwgaW4KdGhlIHJlbGF0aXZlIG9yaWVudGF0aW9uLgoKSSB0aGluayBJIGNhbiBmdXJ0aGVyIHByb3ZlIHRoZSBzaW1pbGFyaXR5IG9mIG91ciBpbnB1dHMgdmlhIGEgZGlyZWN0CmNvbXBhcmlzb24gb2YgdGhlIGRhdGFzdHJ1Y3R1cmVzOgpUeGkubGVzaW9uLmNvZGluZy5ER0VMaXN0LkxvZ0NQTS5maWx0ZXJlZC5ub3JtICh1Z2ggd2hhdCBhIG5hbWUpCnZzLiBleHRlcm5hbF9jZi4gIEluIG9yZGVyIHRvIG1ha2UgdGhhdCBjb21wYXJpc29uLCBJIG5lZWQgdG8gcmVuYW1lCm15IHJvd3MgdG8gdGhlIGdlbmVjYXJkIElEcyBhbmQgdGhlIGNvbHVtbnMuCgpgYGB7ciwgZXZhbD1GQUxTRX0KdGhlaXJfbm9ybV9leHBycyA8LSBUeGkubGVzaW9uLmNvZGluZy5ER0VMaXN0LkxvZ0NQTS5maWx0ZXJlZC5ub3JtCgpteV9oZ25jX2lkcyA8LSBtYWtlLm5hbWVzKGZEYXRhKGV4dGVybmFsX2NmKVtbImhnbmNfc3ltYm9sIl1dLCB1bmlxdWUgPSBUUlVFKQpteV9yZW5hbWVkIDwtIHNldF9leHB0X2dlbmVuYW1lcyhleHRlcm5hbF9jZiwgaWRzID0gbXlfaGduY19pZHMpCm15X25vcm0gPC0gbm9ybWFsaXplX2V4cHQobXlfcmVuYW1lZCwgZmlsdGVyID0gVFJVRSwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIpCm15X25vcm1fZXhwcnMgPC0gYXMuZGF0YS5mcmFtZShleHBycyhteV9ub3JtKSkKCm91cl9leHBycyA8LSBtZXJnZSh0aGVpcl9ub3JtX2V4cHJzLCBteV9ub3JtX2V4cHJzLCBieSA9ICJyb3cubmFtZXMiKQpyb3duYW1lcyhvdXJfZXhwcnMpIDwtIG91cl9leHByc1tbIlJvdy5uYW1lcyJdXQpvdXJfZXhwcnNbWyJSb3cubmFtZXMiXV0gPC0gTlVMTApkaW0ob3VyX2V4cHJzKQoKIyMgSSBmdWxseSBleHBlY3RlZCBhIGNvcnJlbGF0aW9uIGhlYXRtYXAgb2YgdGhlIGNvbWJpbmVkCiMjIGRhdGEgdG8gc2hvdyBhIHNldCBvZiBwYWlyZWQgc2FtcGxlcyBhY3Jvc3MgdGhlIGJvYXJkLgojIyBUaGF0IGlzIGFic29sdXRlbHkgbm90IHRydWUuCmNvcnJlbGF0aW9ucyA8LSBwbG90X2NvcmhlYXQob3VyX2V4cHJzKQpjb3JyZWxhdGlvbnNbWyJzY2F0dGVyIl1dCmNvcnJlbGF0aW9uc1tbInBsb3QiXV0KYGBgCgpgYGB7ciwgZXZhbD1GQUxTRX0KY29sb3JfZmFjdCA8LSBmYWN0b3IodGFyZ2V0cy5sZXNpb24kdHJlYXRtZW50X291dGNvbWUpCmxldmVscyhjb2xvcl9mYWN0KQojIyBBZGRlZCBieSBhdGIgdG8gc2VlIGN1cmUvZmFpbCBvbiB0aGUgc2FtZSBkYXRhc2V0CmdncGxvdChkYXRhLmZyYW1lLCBhZXMoeD1QQzEsIHk9UEMyLCBjb2xvcj1jb2xvcl9mYWN0KSkgKwogIGdlb21fcG9pbnQoc2l6ZT01LCBzaGFwZT0yMCkgKwogIHRoZW1lX2NhbGMoKSArCiAgdGhlbWUocGFuZWwuZ3JpZC5tYWpvciA9IGVsZW1lbnRfYmxhbmsoKSwgcGFuZWwuZ3JpZC5taW5vciA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTUsIHZqdXN0ID0gMC41KSwKICAgICAgICBheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplID0gMTUpLCBheGlzLnRpdGxlID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNSksCiAgICAgICAgbGVnZW5kLnBvc2l0aW9uPSJub25lIikgKwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjKCJwdXJwbGUiLCAicmVkIiwiYmxhY2siKSkgKwogIGFubm90YXRlKCJ0ZXh0IiwgeD0tNTAsIHk9ODAsIGxhYmVsPXBhc3RlKCJQZXJtYW5vdmEgUHIoPkYpID0iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZlZ2FuWzEsNV0pLCBzaXplPTMsIGZvbnRmYWNlPSJib2xkIikgKwogIHhsYWIocGFzdGUoIlBDMSAtIixwYy5wZXJbMV0sIiUiKSkgKwogIHlsYWIocGFzdGUoIlBDMiAtIixwYy5wZXJbMl0sIiUiKSkgKwogIHhsaW0oLTIwMCwxMTApCmBgYAoKIyMgREUgY29tcGFyaXNvbnMKClRoZSBmb2xsb3dpbmcgaXMgdGhlaXIgY29tcGFyaXNvbiBvZiBoZWFsdGh5IHRpc3N1ZSB2cy4gIENMIGxlc2lvbiBhbmQKRmFpbHVyZSB2cy4gQ3VyZS4gIEkgYW0gZ29pbmcgdG8gZm9sbG93IGl0IHdpdGggbXkgYW5hbGFnb3VzCmV4YW1pbmF0aW9uIHVzaW5nIGxpbW1hLiAgTm90ZSwgZWFjaCBvZiB0aGUgcGFpcnMgb2YgdmFyaWFibGVzIGNyZWF0ZWQKaW4gdGhlIGZvbGxvd2luZyBibG9jayBpcyB4eHggZm9sbG93ZWQgYnkgeHh4LnRyZWF0OyB0aGUgZm9ybWVyIGlzCmhlYWx0aHkgdnMgbGVzaW9uIGFuZCB0aGUgbGF0dGVyIGlzIHRoZSBmYWlsIHZzIGN1cmUgc2V0LgoKYGBge3IsIGV2YWw9RkFMU0V9CiMgTW9kZWwgbWF0cmljZXM6CiMgQ0wgbGVzaW9ucyB2cy4gSFM6CmRlc2lnbi5sZXNpb24gPC0gbW9kZWwubWF0cml4KH4wICsgZGlzZWFzZS5sZXNpb24pCmNvbG5hbWVzKGRlc2lnbi5sZXNpb24pIDwtIGxldmVscyhkaXNlYXNlLmxlc2lvbikKCiMgRmFpbHVyZSB2cy4gQ3VyZToKZGVzaWduLmxlc2lvbi50cmVhdG1lbnQgPC0gbW9kZWwubWF0cml4KH4wICsgdHJlYXRtZW50Lmxlc2lvbikKY29sbmFtZXMoZGVzaWduLmxlc2lvbi50cmVhdG1lbnQpIDwtIGxldmVscyh0cmVhdG1lbnQubGVzaW9uKQoKbXlER0VMaXN0Lmxlc2lvbi5jb2RpbmcgPC0gREdFTGlzdChjYWxjTm9ybTEkY291bnRzKQpteURHRUxpc3QuT1AuTm90RmlsIDwtIERHRUxpc3QoQ1BNX25vcm1EYXRhX25vdGZpbHRlcmVkX09QKQoKIyBNb2RlbCBtZWFuLXZhcmlhbmNlIHRyZW5kIGFuZCBmaXQgbGluZWFyIG1vZGVsIHRvIGRhdGEuCiMgVXNlIFZPT00gZnVuY3Rpb24gZnJvbSBMaW1tYSBwYWNrYWdlIHRvIG1vZGVsIHRoZSBtZWFuLXZhcmlhbmNlIHJlbGF0aW9uc2hpcApub3JtRGF0YS5sZXNpb24uY29kaW5nIDwtIHZvb20obXlER0VMaXN0Lmxlc2lvbi5jb2RpbmcsIGRlc2lnbi5sZXNpb24pCm5vcm1EYXRhLk9QLk5vdEZpbCA8LSB2b29tKG15REdFTGlzdC5PUC5Ob3RGaWwsIGRlc2lnbi5sZXNpb24udHJlYXRtZW50KQoKY29sbmFtZXMobm9ybURhdGEubGVzaW9uLmNvZGluZykgPC0gdGFyZ2V0cy5sZXNpb24kc2FtcGxlCmNvbG5hbWVzKG5vcm1EYXRhLk9QLk5vdEZpbCkgPC0gdGFyZ2V0cy5vbmx5cGF0aWVudHMkc2FtcGxlCgojIGZpdCBhIGxpbmVhciBtb2RlbCB0byB5b3VyIGRhdGEKZml0Lmxlc2lvbi5jb2RpbmcgPC0gbG1GaXQobm9ybURhdGEubGVzaW9uLmNvZGluZywgZGVzaWduLmxlc2lvbikKZml0Lmxlc2lvbi5jb2RpbmcudHJlYXRtZW50IDwtIGxtRml0KG5vcm1EYXRhLk9QLk5vdEZpbCwgZGVzaWduLmxlc2lvbi50cmVhdG1lbnQpCgojIGNvbnRyYXN0IG1hdHJpeApjb250cmFzdC5tYXRyaXgubGVzaW9uIDwtIG1ha2VDb250cmFzdHMoQ0wudnMuQ09OID0gY3V0YW5lb3VzIC0gY29udHJvbCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxldmVscz1kZXNpZ24ubGVzaW9uKQpjb250cmFzdC5tYXRyaXgubGVzaW9uLnRyZWF0IDwtIG1ha2VDb250cmFzdHMoZmFpbHVyZS52cy5jdXJlID0gZmFpbHVyZSAtIGN1cmUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsZXZlbHM9ZGVzaWduLmxlc2lvbi50cmVhdG1lbnQpCgojIGV4dHJhY3QgdGhlIGxpbmVhciBtb2RlbCBmaXQKZml0cy5sZXNpb24uY29kaW5nIDwtIGNvbnRyYXN0cy5maXQoZml0Lmxlc2lvbi5jb2RpbmcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbnRyYXN0Lm1hdHJpeC5sZXNpb24pCmZpdHMubGVzaW9uLmNvZGluZy50cmVhdCA8LSBjb250cmFzdHMuZml0KGZpdC5sZXNpb24uY29kaW5nLnRyZWF0bWVudCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29udHJhc3QubWF0cml4Lmxlc2lvbi50cmVhdCkKCiMgZ2V0IGJheWVzaWFuIHN0YXRzIGZvciB5b3VyIGxpbmVhciBtb2RlbCBmaXQKZWJGaXQubGVzaW9uLmNvZGluZyA8LSBlQmF5ZXMoZml0cy5sZXNpb24uY29kaW5nKQplYkZpdC5sZXNpb24uY29kaW5nLnRyZWF0IDwtIGVCYXllcyhmaXRzLmxlc2lvbi5jb2RpbmcudHJlYXQpCgojIFRvcFRhYmxlIC0tLS0KYWxsSGl0cy5sZXNpb24uY29kaW5nIDwtIHRvcFRhYmxlKGViRml0Lmxlc2lvbi5jb2RpbmcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhZGp1c3QgPSJCSCIsIGNvZWY9MSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG51bWJlcj0zNDkzNSwgc29ydC5ieT0ibG9nRkMiKQphbGxIaXRzLmxlc2lvbi5jb2RpbmcudHJlYXQgPC0gdG9wVGFibGUoZWJGaXQubGVzaW9uLmNvZGluZy50cmVhdCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFkanVzdCA9IkJIIiwgY29lZj0xLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbnVtYmVyPTM0Nzc2LCBzb3J0LmJ5PSJsb2dGQyIpCm15VG9wSGl0cyA8LSByb3duYW1lc190b19jb2x1bW4oYWxsSGl0cy5sZXNpb24uY29kaW5nLCAiZ2VuZUlEIikKbXlUb3BIaXRzLnRyZWF0IDwtIHJvd25hbWVzX3RvX2NvbHVtbihhbGxIaXRzLmxlc2lvbi5jb2RpbmcudHJlYXQsICJnZW5lSUQiKQoKIyBtdXRhdGUgdGhlIGZvcm1hdCBvZiBudW1lcmljIHZhbHVlczoKbXlUb3BIaXRzIDwtIG11dGF0ZShteVRvcEhpdHMsIGxvZzEwUHZhbCA9IHJvdW5kKC1sb2cxMChhZGouUC5WYWwpLDIpLAogICAgICAgICAgICAgICAgICAgIGFkai5QLlZhbCA9IHJvdW5kKGFkai5QLlZhbCwgMiksCiAgICAgICAgICAgICAgICAgICAgQiA9IHJvdW5kKEIsIDIpLAogICAgICAgICAgICAgICAgICAgIEF2ZUV4cHIgPSByb3VuZChBdmVFeHByLCAyKSwKICAgICAgICAgICAgICAgICAgICB0ID0gcm91bmQodCwgMiksCiAgICAgICAgICAgICAgICAgICAgbG9nRkMgPSByb3VuZChsb2dGQywgMiksCiAgICAgICAgICAgICAgICAgICAgZ2VuZUlEID0gZ2VuZUlEKQoKbXlUb3BIaXRzLnRyZWF0IDwtIG11dGF0ZShteVRvcEhpdHMudHJlYXQsIGxvZzEwUHZhbCA9IHJvdW5kKC1sb2cxMChhZGouUC5WYWwpLDIpLAogICAgICAgICAgICAgICAgICAgICAgICAgIGFkai5QLlZhbCA9IHJvdW5kKGFkai5QLlZhbCwgMiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgQiA9IHJvdW5kKEIsIDIpLAogICAgICAgICAgICAgICAgICAgICAgICAgIEF2ZUV4cHIgPSByb3VuZChBdmVFeHByLCAyKSwKICAgICAgICAgICAgICAgICAgICAgICAgICB0ID0gcm91bmQodCwgMiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgbG9nRkMgPSByb3VuZChsb2dGQywgMiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgZ2VuZUlEID0gZ2VuZUlEKQojc2F2ZShteVRvcEhpdHMsIGZpbGUgPSAibXlUb3BIaXRzIikKI3NhdmUobXlUb3BIaXRzLnRyZWF0LCBmaWxlID0gIm15VG9wSGl0cy50cmVhdCIpCmBgYAoKIyMgUGVyZm9ybSBteSBhbmFsYWdvdXMgbGltbWEgYW5hbHlzaXMKCmBgYHtyIGNvbXBhcmVfcmVzdWx0LCBldmFsPUZBTFNFfQpteV9maWx0IDwtIG5vcm1hbGl6ZV9leHB0KG15X3JlbmFtZWQsIGZpbHRlciA9ICJzaW1wbGUiKQpsaW1tYV9jZiA8LSBsaW1tYV9wYWlyd2lzZShteV9maWx0LCBtb2RlbF9iYXRjaCA9IEZBTFNFKQoKbXlfdGFibGUgPC0gbGltbWFfY2ZbWyJhbGxfdGFibGVzIl1dW1siZmFpbHVyZV92c19jdXJlIl1dCnRoZWlyX3RhYmxlIDwtIG15VG9wSGl0cy50cmVhdAoKZGltKG15X3RhYmxlKQpkaW0obXlUb3BIaXRzLnRyZWF0KQpvdXJfdGFibGUgPC0gbWVyZ2UobXlfdGFibGUsIG15VG9wSGl0cy50cmVhdCwgYnkueCA9ICJyb3cubmFtZXMiLCBieS55ID0gImdlbmVJRCIpCmRpbShvdXJfdGFibGUpCmNvbXBhcmlzb24gPC0gcGxvdF9saW5lYXJfc2NhdHRlcihvdXJfdGFibGVbLCBjKCJsb2dGQy54IiwgImxvZ0ZDLnkiKV0pCmNvbXBhcmlzb24kc2NhdHRlcgpjb21wYXJpc29uJGNvcnJlbGF0aW9uCmNvbXBhcmlzb24kbG1fbW9kZWwKYGBgCgpPaywgc28gdGhlcmUgaXMgYSBjb25zdGl0dWl0aXZlIGRpZmZlcmVuY2UgaW4gb3VyIHJlc3VsdHMsIGFuZCBpdCBpcwpzaWduaWZpY2FudC4gIFdoYXQgZG9lcyB0aGF0IG1lYW4gZm9yIHRoZSBzZXQgb2YgZ2VuZXMgb2JzZXJ2ZWQ/CgpXaXRoIHRoYXQgc2FpZCwgaW4gbXkgbW9zdCByZWNlbnQgbWFudWFsIHJ1biBvZiB0aGlzLCB0aGUgcmVzdWx0cyBhcmUKcXVpdGUgZ29vZCwgSSBnb3QgYSAwLjc1IGNvcnJlbGF0aW9uOyBJIGJldCB0aGUgcHJpbWFyeSBvdXRsaWVycyAob24KdGhlIGF4ZXMpIGFyZSBqdXN0IGdlbmVzIGZvciB3aGljaCB3ZSBnb3QgZGlmZmVyZW50IGdlbmU8LT50eCBtYXBwaW5ncwpkdWUgdG8gbWUgdXNpbmcgaGlzYXQgYW5kIHRoZWlyIHVzYWdlIG9mIGthbGxpc3RvLgoKSSBndWVzcyBJIGNhbiB0ZXN0IHRoaXMgaHlwb3RoZXNpcyBieSBqdXN0IHN3YXBwaW5nIGluIHRoZWlyIGNvdW50cwppbnRvIG15IGRhdGEgc3RydWN0dXJlLgoKYGBge3IsIGV2YWw9RkFMU0V9CnRlc3RfY291bnRzIDwtIGFzLmRhdGEuZnJhbWUobXlER0VMaXN0Lmxlc2lvbi5jb2RpbmdbWyJjb3VudHMiXV0pCnRlc3RfY291bnRzW1siaG9zdF9IUzAxIl1dIDwtIE5VTEwKdGVzdF9jb3VudHNbWyJob3N0X0hTMDIiXV0gPC0gTlVMTAp0ZXN0X2NvdW50c1tbImhvc3RfSFMwMyJdXSA8LSBOVUxMCnRlc3RfY291bnRzW1siaG9zdF9IUzA0Il1dIDwtIE5VTEwKdGVzdF9jb3VudHNbWyJob3N0X0hTMDUiXV0gPC0gTlVMTAp0ZXN0X2NvdW50c1tbImhvc3RfSFMwNiJdXSA8LSBOVUxMCnRlc3RfY291bnRzW1siaG9zdF9IUzA3Il1dIDwtIE5VTEwKCmRpbSh0ZXN0X2NvdW50cykKZGltKGV4cHJzKG15X3Rlc3QpKQojIyBPaCwgdGhhdCBzdXJwcmlzZXMgbWUsIHRoZSBrYWxsaXN0byBkYXRhIGhhcyB+IDZrIGZld2VyIGdlbmVzPwpgYGAKCiMjIFNlZSBpZiB0aGVyZSBhcmUgc2hhcmVkIERFIGdlbmVzCgohIU5PVEUhISAgSSBhbSB1c2luZyBhIG5vbi1hZGp1c3RlZCBwLXZhbHVlIGZpbHRlciBoZXJlIGJlY2F1c2UgSSB3YW50CnRvIHVzZSB0aGUgc2FtZSBmaWx0ZXIgdGhleSB1c2VkIGZvciB0aGUgdm9sY2FubyBwbG90LgoKYGBge3Igc2hhcmVkX2dlbmVzLCBldmFsPUZBTFNFfQpteV9maWx0ZXIgPC0gYWJzKG15X3RhYmxlW1sibG9nRkMiXV0pID4gMS4wICYgbXlfdGFibGVbWyJQLlZhbHVlIl1dIDw9IDAuMDUKc3VtKG15X2ZpbHRlcikKdGhlaXJfZmlsdGVyIDwtIGFicyh0aGVpcl90YWJsZVtbImxvZ0ZDIl1dKSA+IDEuMCAmIHRoZWlyX3RhYmxlW1siUC5WYWx1ZSJdXSA8PSAwLjA1CnN1bSh0aGVpcl9maWx0ZXIpCgpteV9zaGFyZWQgPC0gcm93bmFtZXMobXlfdGFibGUpW215X2ZpbHRlcl0gJWluJSB0aGVpcl90YWJsZVt0aGVpcl9maWx0ZXIsICJnZW5lSUQiXQpzdW0obXlfc2hhcmVkKQoKc2hhcmVkIDwtIHJvd25hbWVzKG15X3RhYmxlKVtteV9maWx0ZXJdCnNoYXJlZFtteV9zaGFyZWRdCgpib3RoIDwtIGxpc3QoCiAgInVzIiA9IHJvd25hbWVzKG15X3RhYmxlKVtteV9maWx0ZXJdLAogICJ0aGVtIiA9IHRoZWlyX3RhYmxlW3RoZWlyX2ZpbHRlciwgImdlbmVJRCJdKQp0dCA8LSBVcFNldFI6OmZyb21MaXN0KGJvdGgpClVwU2V0Ujo6dXBzZXQodHQpCmBgYAoKIyMgQ29tcGFyZSB0aGUgdHdvIGRhdGFzZXRzIGRpcmVjdGx5CgpgYGB7ciBzY290dF9leHRlcm5hbH0Kb25seV90bXJjMyA8LSBzdWJzZXRfZXhwdCh0bXJjM19leHRlcm5hbCwgc3Vic2V0ID0gImNvbmRpdGlvbj09J0NvbG9tYmlhJyIpICU+JQogIHNldF9leHB0X2NvbmRpdGlvbnMoZmFjdCA9ICJmaW5hbG91dGNvbWUiKQpvbmx5X3RtcmMzX2RlIDwtIGFsbF9wYWlyd2lzZShvbmx5X3RtcmMzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKb25seV90bXJjM19kZQpvbmx5X3RtcmMzX3RhYmxlIDwtIGNvbWJpbmVfZGVfdGFibGVzKG9ubHlfdG1yYzNfZGUsIHNjYWxlX3AgPSBUUlVFKQpvbmx5X3RtcmMzX3RhYmxlCm9ubHlfdG1yYzNfdG9wMTAwIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMob25seV90bXJjM190YWJsZSwgbiA9IDEwMCkKb25seV90bXJjM191cCA8LSBvbmx5X3RtcmMzX3RvcDEwMFtbImRlc2VxIl1dW1sidXBzIl1dW1siZmFpbHVyZV92c19jdXJlIl1dCm9ubHlfdG1yYzNfZG93biA8LSBvbmx5X3RtcmMzX3RvcDEwMFtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJmYWlsdXJlX3ZzX2N1cmUiXV0KCnRtcmMzX2V4dGVybmFsX2RlIDwtIGFsbF9wYWlyd2lzZSh0bXJjM19leHRlcm5hbCwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFsbGVsID0gcGFyYWxsZWwsIGZpbHRlciA9ICJzaW1wbGUiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRtcmMzX2V4dGVybmFsX3RhYmxlIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRtcmMzX2V4dGVybmFsX2RlLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9ICJleGNlbC90bXJjM19zY290dF9iaW9wc2llcy54bHN4IikKdG1yYzNfZXh0ZXJuYWxfc2lnIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdG1yYzNfZXh0ZXJuYWxfdGFibGUsIGV4Y2VsID0gImV4Y2VsL3RtcmMzX3Njb3R0X2Jpb3BzaWVzX3NpZy54bHN4IikKCnRtcmMzX2V4dGVybmFsX2NmIDwtIHNldF9leHB0X2NvbmRpdGlvbnModG1yYzNfZXh0ZXJuYWwsIGZhY3QgPSAiZmluYWxvdXRjb21lIikKdG1yYzNfZXh0ZXJuYWxfY2YgPC0gIHNldF9leHB0X2JhdGNoZXModG1yYzNfZXh0ZXJuYWxfY2YsIGZhY3QgPSAibGFiIikKdG1yYzNfZXh0ZXJuYWxfY2Zfbm9ybSA8LSBub3JtYWxpemVfZXhwdCh0bXJjM19leHRlcm5hbF9jZiwgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBub3JtID0gInF1YW50IiwgY29udmVydCA9ICJjcG0iLCB0cmFuc2Zvcm0gPSAibG9nMiIpCnBsb3RfcGNhKHRtcmMzX2V4dGVybmFsX2NmX25vcm0pCnRtcmMzX2V4dGVybmFsX2NmX25iIDwtIG5vcm1hbGl6ZV9leHB0KHRtcmMzX2V4dGVybmFsX2NmLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiYXRjaCA9ICJzdmFzZXEiLCBjb252ZXJ0ID0gImNwbSIsIHRyYW5zZm9ybSA9ICJsb2cyIikKcGxvdF9wY2EodG1yYzNfZXh0ZXJuYWxfY2ZfbmIpCgp0bXJjM19leHRlcm5hbF9jZl9kZSA8LSBhbGxfcGFpcndpc2UodG1yYzNfZXh0ZXJuYWxfY2YsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJhbGxlbCA9IHBhcmFsbGVsLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kcyA9IG1ldGhvZHMpCnRtcmMzX2V4dGVybmFsX2NmX2RlCnRtcmMzX2V4dGVybmFsX2NmX3RhYmxlIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRtcmMzX2V4dGVybmFsX2NmX2RlLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9ICJleGNlbC90bXJjM19zY290dF9jZl90YWJsZS54bHN4IikKdG1yYzNfZXh0ZXJuYWxfY2ZfdGFibGUKdG1yYzNfZXh0ZXJuYWxfY2Zfc2lnIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdG1yYzNfZXh0ZXJuYWxfY2ZfdGFibGUsIGV4Y2VsID0gImV4Y2VsL3RtcmMzX3Njb3R0X2NmX3NpZy54bHN4IikKdG1yYzNfZXh0ZXJuYWxfY2Zfc2lnCgp0bXJjM19leHRlcm5hbF9zcGVjaWVzIDwtIHNldF9leHB0X2NvbmRpdGlvbnModG1yYzNfZXh0ZXJuYWwsIGZhY3QgPSAiUGFyYXNpdGVTcGVjaWVzIikgJT4lCiAgc2V0X2V4cHRfY29sb3JzKGNvbG9yX2Nob2ljZXNbWyJwYXJhc2l0ZSJdXSkKYGBgCgojIyBDb21wYXJlIHRoZSBsMkZDIHZhbHVlcwoKTGV0IHVzIGxvb2sgYXQgdGhlIHRvcC9ib3R0b20gMTAwIGdlbmVzIG9mIHRoZXNlIHR3byBkYXRhc2V0cyBhbmQgc2VlIGlmIHRoZXkKaGF2ZSBhbnkgc2ltaWxhcml0aWVzLgoKTm90ZSB0byBzZWxmLCBzZXQgdXAgczQgZGlzcGF0Y2ggb24gY29tcGFyZV9kZV90YWJsZXMhCgpgYGB7cn0KY29tcGFyZWQgPC0gY29tcGFyZV9kZV90YWJsZXMob25seV90bXJjM190YWJsZSwgZXh0ZXJuYWxfdGFibGUsIGZpcnN0X3RhYmxlID0gMSwgc2Vjb25kX3RhYmxlID0gMSkKY29tcGFyZWQkc2NhdHRlcgpjb21wYXJlZCRjb3JyZWxhdGlvbgpgYGAKCiMgQ29tcGFyZSB2aXNpdHMgYnkgY2VsbHR5cGUgYW5kIEMvRgoKSSBhc3N1bWUgdGhpcyByZXF1ZXN0IGNhbWUgb3V0IG9mIHRoZSByZXZpZXcgcHJvY2VzcywgYnV0IEkgYW0gbm90CnF1aXRlIHN1cmUgd2hlcmUgdG8gcHV0IGl0LiAgSWYgSSB1bmRlcnN0YW5kIGl0IGNvcnJlY3RseSwgdGhlIGdvYWwgaXMKdG8gbG9vayBhY3Jvc3MgdmlzaXRzIGZvciBjb21iaW5hdGlvbnMgb2YgY3VyZSBhbmQgZmFpbCAobm90CmZhaWwvY3VyZSwgYnV0IHYyL3YxKSBhbmQgYWNyb3NzIGNlbGwgdHlwZXMuCgpUaHVzLCBpbiBvcmRlciB0byBkbyB0aGlzLCBJIHdpbGwgbmVlZCB0byBjb21iaW5lIHRob3NlIHRocmVlCnBhcmFtZXRlcnMgb3Igc2V0IHVwIGEgbW9yZSBjb21wbGV4IG1vZGVsIHRvIGhhbmRsZSB0aGlzLgoKYGBge3J9CnRfY2VsbHZpc2l0Y2YgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0X2NsaW5pY2FsX25vYmlvcCwgZmFjdCA9ICJjZWxsX3Zpc2l0X2NmIikKCnRfY2VsbHZpc2l0Y2ZfZGUgPC0gYWxsX3BhaXJ3aXNlKHRfY2VsbHZpc2l0Y2YsIGtlZXBlcnMgPSB2aXNpdHR5cGVfY29udHJhc3RzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFLCBwYXJhbGxlbCA9IHBhcmFsbGVsLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRob2RzID0gbWV0aG9kcykKdF9jZWxsdmlzaXRjZl9kZQoKdF9jZWxsdmlzaXRjZl9tb25vX3RhYmxlIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2VsbHZpc2l0Y2ZfZGUsIGtlZXBlcnMgPSB2aXNpdHR5cGVfY29udHJhc3RzX21vbm8sIHNjYWxlX3AgPSBUUlVFLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9ERV9WaXNpdHMvQ3VyZV9GYWlsL21vbm9jeXRlX3Zpc2l0X2NmX2NvbWJpbmVkX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NlbGx2aXNpdGNmX21vbm9fdGFibGUKdF9jZWxsdmlzaXRjZl9tb25vX3NpZyA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2VsbHZpc2l0Y2ZfbW9ub190YWJsZSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfVmlzaXRzL0N1cmVfRmFpbC9tb25vY3l0ZV92aXNpdF9jZl9jb21iaW5lZF9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2VsbHZpc2l0Y2ZfbW9ub19zaWcKdF9jZWxsdmlzaXRjZl9uZXV0X3RhYmxlIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2VsbHZpc2l0Y2ZfZGUsIGtlZXBlcnMgPSB2aXNpdHR5cGVfY29udHJhc3RzX25lLCBzY2FsZV9wID0gVFJVRSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfVmlzaXRzL0N1cmVfRmFpbC9uZXV0cm9waGlsX3Zpc2l0X2NmX2NvbWJpbmVkX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NlbGx2aXNpdGNmX25ldXRfdGFibGUKdF9jZWxsdmlzaXRjZl9uZXV0X3NpZyA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2VsbHZpc2l0Y2ZfbmV1dF90YWJsZSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vREVfVmlzaXRzL0N1cmVfRmFpbC9uZXV0cm9waGlsX3Zpc2l0X2NmX2NvbWJpbmVkX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZWxsdmlzaXRjZl9uZXV0X3NpZwp0X2NlbGx2aXNpdGNmX2VvX3RhYmxlIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2VsbHZpc2l0Y2ZfZGUsIGtlZXBlcnMgPSB2aXNpdHR5cGVfY29udHJhc3RzX2VvLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9ERV9WaXNpdHMvQ3VyZV9GYWlsL2Vvc2lub3BoaWxfdmlzaXRfY2ZfY29tYmluZWRfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2VsbHZpc2l0Y2ZfZW9fdGFibGUKdF9jZWxsdmlzaXRjZl9lb19zaWcgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NlbGx2aXNpdGNmX2VvX3RhYmxlLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9ERV9WaXNpdHMvQ3VyZV9GYWlsL2Vvc2lub3BoaWxfdmlzaXRfY2ZfY29tYmluZWRfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NlbGx2aXNpdGNmX2VvX3NpZwpgYGAKCmBgYHtyIGxvYWRtZV9hZnRlciwgZXZhbD1GQUxTRX0KdG1wIDwtIGxvYWRtZShmaWxlbmFtZSA9IHNhdmVmaWxlKQpgYGAKCiMgQmlibGlvZ3JhcGh5Cg==